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A bidirectional LSTM model for cryptocurrency prices forecasting

1. Introduction

Cryptocurrencies were firstly introduced by Nakamoto (2009), that proposed a digital cur-

rency and a payment system based on cryptographic proof instead of the trust of third parties

such as financial institutions. In this way, mediation costs are avoided, potentially reducing

transaction costs and preventing double-spending. The implementation of a cryptocurrency

would use a per-to-per network which timestamps transactions into an ongoing chain, requiring

minimal structure, forming a record that cannot be changed and is secure as long as honest

nodes collectively control more CPU power than any group of attacker nodes. This electronic

cash was named Bitcoin and still stands as the main and more traded cryptocurrency in the mar-

ket. Since the creation of Bitcoin, a big number of cryptocurrencies were created and gained

significant share of this emerging market.

Cryptocurrency market prices are marked by a high volatility, presenting opportunities to

investors searching for higher returns and diversification. This gives an important role in pre-

dicting its futures prices to enable trading strategies and providing information to investors.

Several studies were recently made comprising which factors could affect a cryptocurrency

price, how to predict Bitcoin futures prices using as input economic and technological deter-

minants (Guo, Zhang, Liu, Wang, & Ding, 2021; Liu, Li, Li, Zhu, & Yao, 2021; W. Chen,

Xu, Jia, & Gao, 2021; Cavalli & Amoretti, 2021), previous lagged values (Nakano, Takahashi,

& Takahashi, 2018), and concerning the implementation of trading systems (Silva de Souza

et al., 2019). However these articles are mainly focused on the Bitcoin price prediction only,

with a limited number of them embracing a wider number of currencies such as the work of

Alonso-Monsalve, Suárez-Cetrulo, Cervantes, and Quintana (2020).

In the field of price prediction, machine learning algorithms were proposed by several pa-

pers, given their ability to capture and appropriate modeling the non-linearities of complex

time series. Hu, Tang, Zhang, and Wang (2018), Chalvatzis and Hristu-Varsakelis (2020) and

Peng, Albuquerque, Kimura, and Saavedra (2021) applied different approaches using these al-

gorithms to predict stocks prices directions and implement trading architectures. Bidirectional

LSTM (BiLSTM) models, primarily used on natural language processing, are still weakly ex-

plored on its use for financial time series prediction but already presented promising results, as

observed in the work of Yang and Wang (2022). This kind of models distinguishes itself by con-

sidering the influence of future factors on the present, in a way that the time series are trained

on both directions. Testing the application of this architecture on forecasting cryptocurrency

closing prices is a important contribution of this paper. Varied features can be used as input

to those models, such as lagged values. The search engine Google enables the access of the

relative volume of queries over time via Google Trends platform which could also be used as

input for forecasting methods. Using this available data is possible to observe patterns between

the analyzed asset and its popularity on the internet. As analyzed by Preis, Moat, and Stanley

(2013) on stocks prices movements not only the search trends data reflects price changes but

also can be used to anticipate future movements.

This paper aims to evaluate the one-step prediction of 10 cryptocurrencies on a daily fre-

quency using neural network models, especially a bidirectional LSTM neural network. These

cryptocurrencies are Bitcoin (BTC), Ethereum (ETH), Binance Coin (BNB), Cardano (ADA),

Ripple (XRP), Dogecoin (DOGE), Litecoin (LTC), Chainlink (LINK), Tron (TRX) and Stellar

(XLM). The neural networks algorithms implemented were Multilayer Perceptron (MLP), Long

Short-Term Memory (LSTM) and BiLSTM. The results obtained were compared with results of
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state of the art models, such as Autoregressive Integrated Moving Average (ARIMA) and Ex-

ponential Smoothing (ETS), and with a Random Walk (RW) method. Previous exchange rate

(lagged values) are used as input to all the models. A BiLSTM approach is tested combining

Google Trends data as input.

After this brief introduction, this paper is organized as follows. Section 2 describes a liter-

ature review, detailing other papers achievements on the use of machine learning for financial

prediction and then more specifically for cryptocurrencies price prediction. The methodology

is described in Section 3, followed by the results discussed in Section 4. Section 5 concludes

the work and presents topics for further investigation.

2. Literature review

Machine learning and more specifically neural network models have been intensively ap-

plied in the financial market literature. In recent years, different architectures were proposed

and analyzed such as in Hu et al. (2018), that introduced the ISCA-BPNN by combining im-

proved sine cosine algorithm (ISCA) and back propagation neural networks (BPNN) to predict

the direction of stocks opening prices on the S&P 500 and Dow Jones Industrial Average Indices

(DJIA), from January 2010 to June 2017. Google Trends data was also took into consideration

for improving stock prediction. The ISCA-BPNN model presented better results than other

five models in predicting the direction of the opening price, demonstrating that it is capable of

predicting stock prices and that Google trends can help forecast financial returns.

Another method was proposed by Chalvatzis and Hristu-Varsakelis (2020), via an automated

trading architecture in which the prediction model was tuned to enhance profitability instead of

accuracy. The proposed approach was tested for major U.S. stock indices (S&P 500, DJIA,

NASDAQ and Russel 2000) from January 2010 to December 2019 and compared with four

different models: Random Forest (RF), gradient boosted trees and two variations of LSTM.

It outperformed the indices and compared models in terms of the cumulative or annualized

returns, leading to better long-term risk profile than those of the stock indices (buy-and-hold)

but more volatile than some in the recent literature.

Deep neural network models were applied by Peng et al. (2021), that discussed feature selec-

tion with different architectures and regularization parameters to predict stock prices directions.

A set of 124 technical analysis indicators were submitted to three feature selection methods

eliminating redundant information. Using daily data from stocks of seven global market indexes

between January 2008 and March 2019, the neural networks were tested and compared by their

accuracy, precision, recall, and F-Score, and taking into account profitability and transaction

costs levels to analyze economic gains. The profitability of the strategies did not manage to

significantly outperform the Buy-and-Hold strategy, even showing fairly large negative values

for some hyper parameter combinations, representing that not always neural network models

can succeed and the importance of comparisons between different methods.

Machine learning models were also evaluated concerning cryptocurrencies price forecast-

ing. Nakano et al. (2018) used multi-layer neural networks for BTC price direction prediction

from technical indicators using high frequency data from July 2016 to January 2018. Trading

strategies were applied to buy (sell) when the price is likely to go up (down) and then compared

in terms of risk-return measures considering transactions costs. The proposed model presented

higher performance than buy-and-hold approach and trading strategies based only on the time

series of returns. Trading strategies were also investigated by Silva de Souza et al. (2019), us-

ing price direction forecasts obtained from Support Vector Machines (SVM) and three-layer

Artificial Neural Networks (ANN) models for BTC, Gold and Silver prices. The models used

daily closing prices as inputs from July 2012 to April 2017. Results were compared with a
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simple buy-and-hold strategy in terms of profitability and risk performance indicators. ANN

presented great potential to generate abnormal returns in short run bull trends even accounting

for transaction costs.

The suitability of neural networks with a convolutional component for trend classification

of cryptocurrency exchange rates were investigated by Alonso-Monsalve et al. (2020). Six pop-

ular cryptocurrencies were considered (BTC, Dash, Ether, Litecoin, Monero, and Ripple) from

July 2018 to June 2019 using 18 technical indicators at a one-minute frequency. Four prediction

models were analyzed: Convolutional Neural Networks (CNN), hybrid CNN-LSTM networks,

MLP and Radial Basis Function Neural Networks (RBFNN). The results show that CNN and,

especially, CNN-LSTM are suitable as predictors for the price trend of most cryptocurrencies,

especially for BTC, Ether and Litecoin. Results of the CNN-LSTM architecture were signifi-

cantly better than the remaining techniques, consisting on the only model that could predict the

trends of Dash and Ripple.

Z. Chen, Li, and Sun (2020) leveraged machine learning techniques focusing on the feasi-

bility of applying different modeling techniques to samples with different data structures and di-

mensional features. A binary classification algorithm was developed to predict the sign change

of BTC price. Two datasets were employed: the first included BTC daily price, network data,

trading and market data, media and investor attention and gold spot price, from February 2017

to February 2019. The second one consisted of 5-minute interval BTC trading price from July

2017 to January 2018. The most useful and meaningful features were selected for the predic-

tion models. Two statistical methods were implemented, logistic regression (LR) and linear dis-

criminant analysis (LDA), while the machine learning models used were RF, XGBoost (XGB),

quadratic discriminant analysis (QDA), SVM and LSTM. The results showed that the statisti-

cal methods perform better for low-frequency data with high-dimensional features, while the

machine learning models outperform statistical methods for high-frequency data.

Guo et al. (2021) proposed and evaluated a new price forecasting model, WT-CATCN,

based on the Wavelet Transform (WT) and a Casual Multi-Head Attention Temporal Convo-

lutional Network (CATCN), using selected and analyzed features and demonstrating the predic-

tive power of the volume difference between big and small exchanges. Inter-exchange Transac-

tions, Inner-exchange Market Prices and Google Trends data from January 2016 to December

2018 at a daily frequency were selected as input. The WT-CATCN was compared with base-

line and state-of-the-art methods in terms of closeness and direction metrics. The correlations

between the volumes of different exchanges indeed contributed to the price forecasting, while

WT-CATCN model outperformed the state-of-the-art models by at least 25% in terms of Root

Mean Square Error (RMSE).

Ibrahim, Kashef, and Corrigan (2021) compared various BTC price prediction models over

short time-frames to predict the direction of price movement. The tested models included

ARIMA, Prophet, RF, RF Lagged-Auto-Regression, and MLP. BTC information was collected

in the form of tick-data dating back to 2014 and transformed into 5-min intervals and in the

format of 5-min Open High Low Close (OHLC) plus volume dating back to September 2017.

5-min OHLC data for Apple, Facebook, Google, and Microsoft stocks dating back to January

2018 was also gathered. The MLP predictions outperformed all of the tested models, with 54%

accuracy, while Prophet achieved better accuracy than the ARIMA and RF models. Koo and

Kim (2021) focused on daily price prediction of BTC based on MLP, Recurrent Neural Net-

works (RNN), and LSTM, with the application of the Flattening Distribution Strategy (FDS).

BTC data was analyzed from April 2013 to April 2020 with six types of data (volume of busi-

ness, market capitalization and prices of BTC in terms of open, high, low, close). The FDS

artificially manipulates the concentrated return into the uniform distributed data. Consequently,
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it alleviated the sensitivity of the neural networks and improved the prediction performances.

Besides the benefit of improvement in accuracy, it turns out that the FDS reduced the error

spread and enlarged the overlapping region between the label and the prediction.

Liu et al. (2021) constructed a feature system with 40 determinants that affects the price of

BTC considering aspects of the cryptocurrency market, public attention and the macroeconomic

environment. A deep learning method named Stacked Denoising AutoEncoders (SDAE) was

utilized to predict the price of BTC from July 2013 to December 2019. SDAE performed better

in both directional and level prediction compared with popular methods, such as BPNN and

SVR. Jaquart, Dann, and Weinhardt (2021) analyzed the predictability of the BTC market across

prediction horizons ranging from 1 to 60 min using technical, blockchain-based, sentiment-

/interest-based, and asset-based features ranging from March 2019 to December 2019 at 1-

minute frequency. Various machine learning models were tested, finding that, while all models

outperform a random classifier, recurrent neural networks and gradient boosting classifiers are

especially well-suited for the examined prediction tasks.

Poongodi, Nguyen, Hamdi, and Cengiz (2021) investigated cryptocurrency price movement

trends using social media data. Data was assembled from the bitcointalk.org forums and ver-

ifiable BTC value trade information, from April 2011 to May 2018. A neural system was

developed via Keras API and to quantify the execution of the model, estimations of misfortune

work in mean squared blunder and the R squared score were applied. The model predicted the

snapshots of increments and downturn of the cost exceptionally well and confirmed that BTC

trend prediction is possible given social media data. W. Chen et al. (2021) evaluated the predic-

tion of BTC using LSTM with economic and technological determinants as inputs, previously

selected with ANN and random forest models. The results were compared with methods based

on lagged BTC exchange rates as inputs, such as LSTM, ANFIS (Adaptive Network Fuzzy

Inference System), ARIMA and SVR. Data comprised BTC daily exchange rate, blockchain

information, public attention measures, financial indexes, currencies ratios, crude oil and gold

prices. The period from August 2011 to July 2018 was divided into four different samples to

evaluate and select the forecasting determinants by their relevance for each period. The use of

economic and technology determinants as inputs in the LSTM lead to a better performance in

terms of statistical accuracy indicators when compared to the competing alternatives.

Cavalli and Amoretti (2021) suggested an approach for BTC trend prediction based on a

One-Dimensional CNN. The proposed model predicted whether the BTC value after n days

would be lower or higher than the latest value of the time series. Data was considered on a daily

frequency from April 2013 to February 2020. The work proposed a methodology for building

datasets used as inputs to the predictor whose items were characterized by different types of

features: BTC historical values and financial indicators, Twitter sentiment analysis and BTC

blockchain information. The CNN presented higher performance compared to LSTM models

in terms of binary accuracy. Applying a trading strategy based on the proposed CNN model

forecasts lead to an increase on the profit when the BTC trend was bullish and a reduction in

losses when the trend was bearish. Hence, it is clear that prediction benefits can be achieved by

the use of machine leaning models for high volatile markets, as for the digital coins, demanding

the evaluation for a large number of cryptocurrencies, which is the aim of this work. 0

3. Methodology

3.1 Data

Data comprising ten of the most relevant cryptocurrencies are selected between the ones

with available data. The following criteria is applied in the selection process, considering the
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variables at January 25, 2022.

a. Ordering the cryptocurrencies by market capitalization (in USD).

b. Selecting the first 40 currencies.

c. Excluding the currencies with less than four years of available exchange data.

d. Excluding stablecoins (whose market value is attached to another stable asset) and curren-

cies presenting a too strong correlation with better ranked ones, such as the cased of Wrapped

Bitcoin (wBTC).

After this process, the ten first cryptocurrencies are selected. They are: Bitcoin, Ethereum,

Binance Coin, Cardano, Ripple, Dogecoin, Litecoin, Chainlink, Tron and Stellar.

Data gathered from these cryptocurrencies comprehends its closing price at a daily fre-

quency, starting at January 1, 2018 and ending at April 30, 2022. Figure 1 presents the evolu-

tion of the daily closing prices on the analysed period for the cryptocurrencies. The exchange

rates are obtained at the CoinMarketCap (2022) website and are available on the tab labeled as

”Historical Data” for each currency.

For the BiLSTM model including Google Trends, the use of python pytrends API is neces-

sary. It allows automating the download of reports from Google Trends, enabling the acquisition

of daily trends data. The presented names of each currency are separately used as search terms

on the API for the same time range and frequency of the closing prices.

Fig. 1: Historical closing prices.

These values pass through data preparation, cleaning, organizing and visualizing the data.

The resulting time series are each of then divided in two samples including training and test sets

in the way presented on Table 1.

Tab. 1: Sample division.

Train Test

Start End Start End

Sample1 January 1, 2018 April 30, 2020 May 1, 2020 April 30, 2021

Sample2 January 1, 2019 April 30, 2021 May 1, 2021 April 30, 2022
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3.2 ARIMA

Autoregressive moving average (ARMA) models are composed by two parts. In the au-

toregressive part (1), the evolving variable of interest is regressed on their previous values. The

moving average (2) indicates that the regression error is a linear combination of errors terms that

occurred at different times in the past. Besides that, c represents a constant and et an aleatory

error (white noise).

yt = c+φ1yt−1 +φ2yt−2 + ...+φpyt−p + et (1)

yt = c+ et +θ1et−1 +θ2et−2 + ...+θqet−q (2)

ARMA models requires stationary of the time series, which narrow down its applications.

The ARIMA models are introduced to solve this problem, by differencing the time series to

make it stationary, generalizing the ARMA approach to a wide range of time series. A general

ARIMA model (3) can be expressed as ARIMA (p, d, q) where p represents the number of

auto-regressive terms, q is the number of non-seasonal differences needed for stationary and d

is the number of lagged forecast errors in the prediction equation.

ýt = c+φ1ýt−1 + ...+φpýt−p +θ1 +θ1et−1 + ...+θqet−q + et (3)

The function auto.arima from forecast package in R is the chosen function to define the pa-

rameter combination (p, d, q) for each training set. auto.arima works by firstly conducting dif-

ferencing tests. As default choice from the function, the Kwiatkowski–Phillips–Schmidt–Shin

(KPSS) test is used to determine the order of differencing, d. The models are then fitted within

ranges of defined p and q, a maximum of 10 is defined for each parameter in these experiments.

The seasonal option is enabled but no seasonality is detected in any sample, as expected, show-

ing no needs to apply a Seasonal Autoregressive Integrated Moving Average (SARIMA) model.

A drift parameter is also included.

In order to find the best model, auto.arima considers the selected information criterion, Cor-

rected Akaike Information Criterion (AICc), and returns the ARIMA model which minimizes

its value. The AICc works by preventing the possibility of overfitting when using the Akaike

Information Criterion (AIC). While AIC is calculated as on equation (4), with k being the esti-

mated number of parameters and L̂ the maximum value of the likelihood function for the model,

AICc includes a correction (5) with n denoting the sample size and k the number of parameters.

AIC = 2k−2 · ln(L̂) (4)

AICc = AIC+
2k(k+1)

n− k−1
(5)

The models are estimated and its residuals are submitted to the Ljung-Box test. The null

hypothesis of Ljung-Box test is: data is independently distributed. If the p-value is larger than

the specified significance level of 0.05, the null hypothesis cannot be rejected. In other words,

there is no clear sign of autocorrelations and the model is valid.

An ARIMA (0,1,0) without intercept, representing a Random Walk, is also estimated for all

the cryptocurrencies. On this approach, the time series is purely predicted based on the previous

time point (t−1). Its results are used as benchmark for the obtained models.

3.3 ETS

Exponential smoothing (ETS) is based on weighted averages of past observations, with the
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weights decaying exponentially as the observations get older. In other words, the more recent

the observation the higher the associated weight (Hyndman & Athanasopoulos, 2018). This

framework generates reliable forecasts quickly and for a wide range of time series, which is

a great advantage and of major importance to applications in industry. A simple exponential

smoothing is expressed on (6), where 0≤ α≤ 1 is the smoothing parameter.

ŷT+1|T = αyT +α(1−α)yT−1 +α(1−α)2yT−2 + · · · (6)

ETS presents up to 18 variations, that may include trend and seasonal components, as on

Holt-Winters’ method, represented on equation (7), with bt and st representing the additive

trend and seasonal components respectively, with smoothing parameters for trend 0 ≤ β∗ ≤ 1

and seasonality 0 ≤ γ ≤ 1−α, m as the frequency of the seasonality, k as the integer part of

(h− 1)/m and ℓt the level. Damped trends may also apply, which makes the trend to a flat

line some time in the future by introducing a damping parameter 0 < φ < 1. Each method is

referred as ETS(cdot,cdot,cdot) for (Error, Trend, Seasonal). This label can also be thought

of as ExponenTial Smoothing. The possibilities for each component are: Error =A,M, Trend

=N,A,Ad and Seasonal=N,A,M, M representing representing multiplicative, A for additive, N

for none and Ad is damped additive. The error component interferes only on the prediction

interval, which is not availed on these experiments, as the focus are on point forecasts.

ŷt+h|t = ℓt +(φ+φ2 + · · ·+φh)bt + st+h−m(k+1)

ℓt = α(yt− st−m)+(1−α)(ℓt−1 +φbt−1)

bt = β∗(ℓt− ℓt−1)+(1−β∗)φbt−1.

st = γ(yt− ℓt−1−bt−1)+(1− γ)st−m,

(7)

The models are estimated in R using the ets() function in the forecast package. The ets() can

automatically estimates the model parameters and returns information about the fitted model,

only requiring the time series as argument. The appropriate models are selected by their AICc

(5).

3.4 MLP

MLP consists on a feedforward Artificial Neural Network (ANN) that can be used to solve

classification and regression problems by simulating simplified biological neurons called per-

ceptrons. It is composed by one input layer, which simply distributes the input features to the

first hidden layer, one or more hidden layers, each of them receives input from the previous

layer, and one output layer, that receives inputs from the outputs of all the neurons on the last

hidden layer. The neurons on these layers are fully connected by connection weights as pre-

sented on Figure 2. This structure enables the mapping of multiple input datasets to output

datasets and the learning of nonlinear functions. The accumulation of weighted values of a

neuron can be expressed as on equation (8) for n inputs.

u(x) =
n

∑
i=1

wixi +bias (8)

The results of the weighted values are then passed to an activation function which generates

the output of the perceptron. Rectified Linear Unit (ReLU) is the selected activation function

for these networks and is represented on. ReLU functions help to achieve fast convergence and

are calculated as f (x) = max(0,x).
A MLP with 3 hidden layers - named as H1, H2 and H3 - is selected to model the cryp-
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Fig. 2: One of the tested MLP architectures. Fig. 3: ReLU activation function.

tocurrencies closing prices. For each layer a set of 4 different possibilities are established for

the number of nodes: 2, 4, 6 and 8 nodes. The batch size is also part of the parameter grid

with possibilities of 16, 32, 64 and 128. To fit the models during the Bayesian optimization 4

different numbers of epochs are proposed: 2, 5, 10 and 20. The implementation of the network

is via Keras API for python, using a sequential model with dense layers.

Data is normalized to be fed to all the implemented ANN models via the scikit-learn package

function MinMaxScaler to be comprehended between 0 and 1. Then it is divided for supervised

learning with a number of 3 time lags, which resulted on the best validation results for most

of the currencies, representing the features and a single output value as the one-step prediction.

The same time lag value is applied to all the ANN models. Adam algorithm is selected for

model optimization. Adam is a stochastic gradient method widely used given its computational

efficiency and suitability for problems with high number of data. The default learning rate of

0.001 is applied to the Adam optimizer. Loss function to monitor the fit of the models is the

MSE (18).

3.5 Bayesian Optimization

An heuristic approach is responsible for a directed search across possible configurations. Se-

lecting the model hyper parameters is fundamental to an optimal working of ANNs. During the

conducted experiments a Bayesian optimization algorithm (Frazier, 2018) is applied to autom-

atize the selection process between a chosen grid. The hyper parameters are optimized using an

implemented cross validation split, referred as Blocked Time Series Split. This cross-validation

method works by adding 2 different limits to the next sample, a initial one between the train-

ing and validation folds and a second one between the folds used at each iteration, preventing

the model from memorizing patterns of different iterations. The number of cross-validation

iterations is defined to 3 and a representation of the defined approach is at Figure 4.

Fig. 4: Blocked Time Series Split.
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The parameters selected are those that maximize the score of the held-out data, according

to the model’s loss function. In contrast to a traditional grid search, not all parameter values are

tried out, but rather a fixed number of parameter settings is sampled from the specified distri-

butions. For this, the Bayesian optimization uses Gaussian Process regression on the objective

function, aiming to find its global minimum. For this study the objective function is to achieve

the minimum loss for the given model parameters. It is applied via the Sequential model-based

optimization package (scikit-optimize).

3.6 Early stopping

In order to prevent overfitting, a regularization method is necessary. Early Stopping stops

training the model when a monitored metric stops improving. In this case, a validation set

corresponding to the last 20% of the training set is hold out to avail the quality of the model by

its validation loss. In that way, Early Stopping avoids the problem of choosing the number of

training epochs to use.

Keras provides an EarlyStopping class which was applied for the models chosen by the

Bayesian Optimization with a patience, the number of epochs to wait for an improvement in the

model, of 30. A ModelCheckpoint callback is also applied, saving the best model in terms of

validation loss for the training epochs.

3.7 LSTM

Introduced by Hochreiter and Schmidhuber (1997), LSTM networks addresses Recurrent

Neural Networks (RNN) memory problem. RNN are applied to recognize patterns when past

results compounds the actual result, as the hypotheses for the studied time series. However,

earlier results are easily forgotten, limiting its application for the cases with influence of more

than the immediate past.

LSTM solves this question with a change in the network architecture. Each neuron now

presents 3 gates - input gate, output gate and forget gate (Figure 5), each of them with its own

function. Equation (9) represents the forget gate, that passes the information, while equation

(10) represents the input gate and equation (11) the output gate. For these calculations, σ is

the sigmoid function, Wx is the weight for the respective gate, ht−1 the output of the previous

LSTM block, xt the current input and bx the biases for the gates.

ft = σ(Wf .[ht−1,xt ]+b f ) (9)

it = σ(Wi.[ht−1,xt ]+bi) (10)

Ot = σ(Wo[ht−1,xt ]+bo) (11)

The cell state is defined by equation (12), while equation (13) represents the candidate value

for cell state and equation (17) the final information as the output for the cell.

Ct = ft .Ct−1 + it .C̃t (12)

C̃t = ReLU(Wc.[ht−1,xt ]+bc) (13)

ht = Ot .ReLU(Ct) (14)

To this research purposes a so called Vanilla LSTM is applied, which presents only one

LSTM layer, that leads to optimal results and avoids high computational cost, characteristic of
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Fig. 5: LSTM neuron structure.

training these networks. Adam optimizer is applied, changing the learning rate to 0.01. LSTM

applies hyperbolic tangent (tanh) as default activation function, but for these experiments ReLU

is applied, leading to better results. The network is applied via Keras API, using a sequential

model with LSTM and Dense layers. The described Bayesian Optimization and Early Stopping

are also used in the LSTM models, selecting number of neurons (2,4 or 8), batch size (16, 32,

64 or 128) and number of epochs to fit the model in the optimization (2, 5, 10 or 20).

3.8 Bidirectional LSTM

Differently from traditional one directional LSTM, the Bidirectional LSTM, proposed by

Graves and Schmidhuber (2005), is trained not only from inputs to outputs, but also from out-

puts to inputs. In summary, a BiLSTM model adds an extra LSTM layer to each of the previous

ones. The forward layer (15) is first feed input data to an LSTM model and then repeat the

training via another LSTM model on the backward layer (16) but on the reverse order of the

sequence of the input data (Figure 6). The equations (15) and (16), with bx and Wx representing

the biases and weights, are combined to generate the output (17).

−→
ht = ReLU

(
W

x
−→
h

xt +W−→
h
−→
h

−−→
ht−1 +b−→

h

)
(15)

←−
ht = ReLU

(
W

x
←
h

xt +W←
h
←
h

←−−
ht+1 +b←

h

)
(16)

yt = W−→
h y

−→
ht +W←−

h y

←−
ht +by (17)

Fig. 6: BiLSTM structure.
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For the implementation of this network, the Bidirectional layer wrapper from Keras API is

applied over the LSTM layer for the sequential model. A model with two bidirectional hidden

layer is utilized, with possibilities of 2, 4 and 8 numbers of nodes per layer, 16, 32, 64 and 128

numbers for batch size and 2, 5, 10 and 20 epochs to selection of the hyperparameters, realized

by Bayesian Optimization. Early Stopping is also applied for the BiLSTM selected models.

The BiLSTM architecture is selected to the appliance of Google Trends data as exogenous

variable, composing with the previous exchange rate a multivariate input. Besides the expected

inputs, no other change on the methodology applied to previous BiLSTM, with only lagged

values as input, is implemented with the addition of Google Trends data. As on the closing

prices, Google Trends data is normalized and prepared to supervised learning, with 3 time lags,

before being feed to the model.

3.9 Accuracy metrics

The forecast values are evaluated by 4 different metrics: Mean Squared Error (MSE), Mean

Absolute Error (MAE), Mean Absolute Percentage Error (MAPE) and Mean Directional Accu-

racy (MDA). These metrics are applied by comparing the forecast values (Ft) to the actual ones

(At) for all the n test values.

On MSE (18) the sum of the square errors is calculated and then divided by the number of

observations. This gives a measure of how far the predicted values are from the actual ones,

avoiding negative error values and mutual cancellation of errors. MSE emphasizes large errors

due to the square used in its calculation.

MSE =
1

n

n

∑
t=1

(At−Ft)
2 (18)

MAE (19) is quite similar with MSE but calculates the absolute errors instead of the square

of the errors. In this way its less sensible to outliers but fails to punish large errors in prediction

and might present difficulties on gradient calculation.

MAE =
1

n

n

∑
t=1

|At−Ft | (19)

MAPE (20) is the sum of the individual absolute errors divided by the actual values. It

constitutes a relative measure, representing the average of the percentage errors. For MSE,

MAE and MAPE, the lower are its values, better fit is the model.

MAPE =
100%

n

n

∑
t=1

∣∣∣∣
At−Ft

At

∣∣∣∣ (20)

MDA (21) compares the forecast direction to the realized one. It works similarly to a binary

evaluation, considering only the upward or downward direction and ignoring the quantitative

value of increase or decrease. It uses the sign() function to determine the sign of the difference

between actual/forecast and past values (t-1) and compare then for the test set. Opposing to the

previous metrics a high MDA is aimed.

MDA =
1

n
∑
t

1sign(At−At−1)==sign(Ft−At−1) (21)

4. Results and discussion
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Applying the described methodology the optimized configuration for each model is defined.

The resulting combinations of parameters for ARIMA is presented on Table 2.

Tab. 2: Parameters selected by auto.arima. Models with drift are represented with ’T’.

ADA BNB BTC DOGE ETH LINK LTC TRX XLM XRP

Sample 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

p 3 5 4 5 4 1 5 8 4 5 2 0 0 3 8 4 3 2 3 2

d 1 2 1 2 1 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1

q 4 1 4 3 2 8 3 1 2 3 4 5 2 4 10 4 2 2 5 5

drift T T T T T T T

For the ETS, a multiplicative error and no seasonality are selected for all the samples by the

ets() function. Trend parameters are presented on Table 3.

Tab. 3: Trend parameters selected by ETS function.

ADA BNB BTC DOGE ETH LINK LTC TRX XLM XRP

Sample 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

Trend Ad A Ad A N A N A Ad A Ad A N N Ad N Ad N N N

The selected hyperparameters for MLP, LSTM, BiLSTM and Google Trends LSTM models

for each cryptocurrency sample are presented respectively on Table 4, Table 5, Table 6 and

Table 7.

Tab. 4: MLP hyperparameters selected by the Bayesian optimization. H1, H2 and H3 are the

number of neurons on the hidden layers and Batch is the batch size.

ADA BNB BTC DOGE ETH LINK LTC TRX XLM XRP

Sample 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

H1 4 4 8 4 8 4 8 4 6 6 6 8 8 4 4 2 8 8 4 2

H2 4 8 2 6 6 6 2 6 4 6 6 8 8 6 6 6 2 4 8 8

H3 4 8 6 4 6 4 6 6 8 8 8 4 8 8 6 8 6 8 8 2

Batch 32 16 32 16 16 32 32 32 16 16 128 16 16 16 16 16 16 16 16 32

Tab. 5: LSTM hyperparameters selected by the Bayesian optimization. H1 is the number of

neurons on the hidden layer and Batch is the batch size.

ADA BNB BTC DOGE ETH LINK LTC TRX XLM XRP

Sample 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

H1 2 8 4 8 8 8 8 4 4 2 2 8 8 8 4 2 4 8 8 8

Batch 32 16 32 16 64 16 128 16 128 128 32 16 32 16 64 64 16 64 16 16

Tab. 6: BiLSTM hyperparameters selected by the Bayesian optimization. H1 and H2 are the

number of neurons on the hidden layers and Batch is the batch size.

ADA BNB BTC DOGE ETH LINK LTC TRX XLM XRP

Sample 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

H1 2 4 8 4 4 8 4 4 2 8 8 8 4 8 4 2 4 2 4 2

H2 2 8 4 2 8 8 8 8 2 2 2 8 2 2 4 2 4 4 2 4

Batch 16 64 64 16 128 32 16 16 64 64 16 32 64 32 128 128 64 128 64 16
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Tab. 7: Google Trends BiLSTM hyperparameters selected by the Bayesian optimization. H1

and H2 are the number of neurons on the hidden layers and Batch is the batch size.

ADA BNB BTC DOGE ETH LINK LTC TRX XLM XRP

Sample 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

H1 4 8 2 4 4 4 8 8 8 8 4 2 4 2 8 8 8 8 8 4

H2 8 2 2 8 8 4 8 2 8 2 2 8 8 8 8 4 8 8 4 8

Batch 16 32 32 32 16 16 64 16 16 16 64 16 16 16 16 16 16 16 16 16

Using these configurations the results of Table 8 are obtained. Given the stochastic nature of

ANNs, each result represents the mean of 20 experiments. Best results between all the models

are highlighted in each row. Comparing only the ANNs, best results of each row are selected

on bold.

Tab. 8: Evaluation of the models, the samples are described with the cryptocurrency abbrevia-

tion followed by the number of the sample.

Sample Metric RW ARIMA ETS MLP LSTM BiLSTM Trends BiLSTM

MSE 1,29E-3 1,46E-3 1,31E-3 4,18E-3 2,89E-3 3,32E-3 2,23E-3

MAE 0,0171 0,0192 0,0172 31,16E-3 26,27E-3 28,21E-3 22,28E-3

MAPE 4,3268 5,1449 4,2955 6,62E+0 5,82E+0 6,33E+0 5,06E+0
ADA-1

MDA 0,4767 0,5014 0,5248 0,5247 0,5259 0,6098

MSE 9,21E-3 9,43E-3 9,26E-3 28,49E-3 25,16E-3 21,61E-3 40,65E-3

MAE 0,0641 0,0653 0,0172 0,1146 0,1092 0,1008 0,1193

MAPE 4,0682 4,1674 4,1260 6,7154 6,4034 6,1065 6,3541
ADA-2

MDA 0,4712 0,4904 0,4688 0,4813 0,4834 0,5897

MSE 219,1255 221,4299 216,9641 1.038,3114 2.960,2470 692,2588 581,9748

MAE 5,5721 5,5621 5,5209 12,2868 18,5934 9,5755 8,8072

MAPE 3,8456 3,8232 3,8180 6,2643 7,5154 5,5483 4,2557
BNB-1

MDA 0,5342 0,5507 0,5014 0,5374 0,5216 0,7311

MSE 497,2777 520,9576 520,9824 820,6345 806,4103 701,9061 1.451,8455

MAE 15,2396 15,9038 5,5209 21,1816 20,4852 18,7513 20,8025

MAPE 3,5885 3,7922 3,6534 5,1608 4,8948 4,4825 4,5910
BNB-2

MDA 0,5315 0,4822 0,5299 0,4873 0,5035 0,6156

MSE 1,44E+6 1,44E+6 1,46E+6 20,32E+6 18,54E+6 11,43E+6 25,43E+6

MAE 675,7244 673,2031 677,2318 2.513,5285 2.329,4232 1.746,4387 2.497,9447

MAPE 2,4060 2,3975 2,4012 6,5692 6,2380 4,8619 6,5484
BTC-1

MDA 0,5205 0,5452 0,4878 0,4795 0,5048 0,5760

MSE 2,85E+6 2,96E+6 2,86E+6 6,59E+6 3,47E+6 3,37E+6 2,14E+6

MAE 1.230,7676 1.269,3290 677,2318 1.944,1756 1.427,6399 1.389,5153 1.131,6847

MAPE 2,7793 2,8709 2,7757 4,4507 3,2356 3,1687 2,5363
BTC-2

MDA 0,5068 0,5068 0,5233 0,5428 0,5418 0,6762

MSE 196,93E-6 210,27E-6 196,92E-6 428,85E-6 369,27E-6 250,21E-6 209,75E-6

MAE 0,0031 0,0035 0,0031 0,0055 0,0046 0,0035 0,0045

MAPE 4,7647 5,4577 4,7763 7,4487 6,6467 5,7125 8,2044
DOGE-1

MDA 0,4712 0,5178 0,5433 0,5473 0,5319 0,5921

MSE 534,80E-6 849,29E-6 555,01E-6 843,26E-6 795,20E-6 958,62E-6 1,51E-3

MAE 0,0119 0,0153 0,0031 0,0167 0,0162 0,0160 0,0163

MAPE 4,4782 5,7029 4,5545 6,5134 6,5377 6,2716 5,9473
DOGE-2

MDA 0,5589 0,5178 0,5307 0,4965 0,5261 0,6136

MSE 2,79E+3 2,67E+3 2,85E+3 25,06E+3 11,06E+3 24,73E+3 11,67E+3

MAE 30,7254 30,1741 30,8124 74,3797 56,8556 74,9170 46,8973

MAPE 3,3744 3,3521 3,3793 5,8879 5,5853 5,9958 3,6775
ETH-1

MDA 0,5178 0,5178 0,4766 0,4949 0,4888 0,7102

MSE 23,88E+3 27,13E+3 23,93E+3 60,22E+3 63,40E+3 77,54E+3 80,45E+3

MAE 113,2543 122,9560 30,8124 189,5752 190,1298 198,6585 199,3909

MAPE 3,6729 3,9847 3,6817 5,8302 6,0083 5,9774 5,8939
ETH-2

MDA 0,5397 0,5014 0,5099 0,5090 0,5076 0,5810

MSE 1,4721 2,3342 1,4683 4,5002 3,2970 2,0529 10,4512

MAE 0,7860 0,9704 0,7806 1,3231 1,1268 0,9743 1,8185

MAPE 4,7462 5,6110 4,7180 7,4907 6,2109 5,9839 8,1839
LINK-1

MDA 0,5068 0,5452 0,5325 0,5402 0,4848 0,5994

MSE 3,4389 3,4271 3,3783 5,6910 3,7305 4,6003 2,2038

MAE 1,1898 1,1915 0,7806 1,5665 1,2898 1,5065 0,9723

MAPE 4,9281 4,9672 4,9223 6,7176 5,6156 6,6142 4,0397
LINK-2

MDA 0,5315 0,5205 0,5371 0,5380 0,5251 0,7086

MSE 50,3886 50,0977 51,3899 74,8434 78,7669 70,2833 48,5848

MAE 4,1442 4,1453 4,1605 5,0106 5,1424 4,8482 3,7305
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Tab. 8: Evaluation of the models, the samples are described with the cryptocurrency abbrevia-

tion followed by the number of the sample.

Sample Metric RW ARIMA ETS MLP LSTM BiLSTM Trends BiLSTM

MAPE 3,5659 3,5560 3,5613 4,1317 4,2260 4,0291 2,9077
LTC-1

MDA 0,5068 0,5178 0,5034 0,5163 0,5237 0,7087

MSE 135,5546 149,6312 134,0707 211,6212 150,5333 174,4532 113,2340

MAE 6,7322 6,9581 4,1605 8,5474 7,1382 8,1270 6,4552

MAPE 3,9287 4,0587 3,9099 4,9939 4,2220 4,8854 3,6936
LTC-2

MDA 0,4904 0,5288 0,5230 0,5251 0,5139 0,6630

MSE 14,93E-6 24,76E-6 15,13E-6 30,45E-6 26,66E-6 24,04E-6 32,38E-6

MAE 0,0018 0,0024 0,0018 0,0026 0,0024 0,0023 0,0022

MAPE 3,8232 5,1849 3,7913 5,3944 4,9938 4,8746 3,7819
TRX-1

MDA 0,5507 0,5315 0,4931 0,5190 0,5015 0,6744

MSE 22,62E-6 25,24E-6 22,19E-6 35,89E-6 34,46E-6 34,77E-6 21,21E-6

MAE 0,0029 0,0032 0,0018 0,0041 0,0040 0,0041 0,0033

MAPE 3,4762 3,8575 3,4605 5,1169 4,8978 5,0902 3,8563
TRX-2

MDA 0,4849 0,5123 0,5380 0,5433 0,5507 0,6104

MSE 340,66E-6 371,14E-6 342,77E-6 575,78E-6 574,85E-6 526,99E-6 192,03E-6

MAE 0,0095 0,0101 0,0095 0,0122 0,0122 0,0121 0,0078

MAPE 4,1244 4,4413 4,1092 5,1209 5,1072 5,5031 3,8518
XLM-1

MDA 0,5096 0,5205 0,5356 0,5397 0,5235 0,6728

MSE 480,01E-6 507,49E-6 480,00E-6 609,29E-6 593,52E-6 540,41E-6 274,89E-6

MAE 0,0127 0,0127 0,0095 0,0156 0,0149 0,0144 0,0104

MAPE 3,9021 3,9057 3,9025 4,9421 4,6599 4,5034 3,3177
XLM-2

MDA 0,5589 0,5068 0,5137 0,5238 0,5182 0,6971

MSE 2,52E-3 3,14E-3 2,52E-3 5,66E-3 4,42E-3 4,04E-3 2,13E-3

MAE 0,0218 0,0262 0,0218 0,0346 0,0299 0,0290 0,0239

MAPE 4,2300 5,3953 4,2300 6,7704 5,6912 5,5381 5,5458
XRP-1

MDA 0,4630 0,5534 0,5094 0,5014 0,5100 0,5985

MSE 3,56E-3 4,09E-3 3,53E-3 4,63E-3 5,99E-3 5,15E-3 3,01E-3

MAE 0,0373 0,0425 0,0218 0,0472 0,0562 0,0529 0,0385

MAPE 4,0090 4,5221 3,9946 5,2432 6,3003 5,7999 4,1782
XRP-2

MDA 0,4712 0,5178 0,5152 0,4941 0,5014 0,6152

Besides the good results from the statistical methods, especially the ETS, the BiLSTM

model enhanced with Google Trends data surpassed all the other methods by a large margin

in terms of directional accuracy and presented better results for MSE, MAE and MAPE for part

of the samples. For samples of BNB, ETH, LINK and LTC, it achieved a directional accuracy

of over 70%, while no accuracy was lower than 57% for all the currencies. The Trends BiLSTM

also lead to the best overall results in terms of MSE, presenting the lowest value for 9 samples,

while ETS resulted on the best MAE results, beating other methods for 13 samples. In terms of

MAPE, Trends BiLSTM and ETS also presented the best results, with the lowest values for 7

and 6 samples respectively.

Between the ANNs using only previous exchange rates, BiLSTM lead to the best results,

which explains its selection to the application of exogenous features. It was followed by LSTM

and then MLP, that presented the poorest results between all the models for most currencies.

MLP actually presented the best results for ETH and XRP second samples in all the metrics,

but was unable to repeat these results for the other samples, beating other models only in terms

of MDA for BNB and DOGE second samples. In the MLP vs LSTM comparison, LSTM

presented lower forecasting errors for 15 samples in terms of MAPE and MAE and 16 in terms

of MSE. On the comparison between the 3 models, BiLSTM presented the lowest MAE for 13

samples.

Comparing only the statistical methods, ETS surpassed the other methods for 14 of the 20

samples, in terms of MDA and MAE, being the best model in the recent period (Sample 2) for

all the cryptocurrencies with consideration of its MAE values. RW presented better results than

ARIMA in its calculated metrics, with the lowest MSE for 9 samples, which illustrates a decent

applicability of using the actual value as forecast.
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5. Conclusion

Neural networks constitutes a powerful method for a wide variety of problems, with several

studies applying them to the financial market. This article composes a comprehensive com-

parison between traditional statistical methods and different neural networks approaches. It

differentiate itself by applying this methodology for a wide set of cryptocurrencies, which in-

cludes Bitcoin, Ethereum, Binance Coin, Cardano, Ripple, Dogecoin, Litecoin, Chainlink, Tron

and Stellar.

Traditional statistical methods lead to good and consistent results, showing why this meth-

ods are considered state of the art on time series prediction. ETS approach resulted on smaller

forecasting errors and higher directional accuracy, beating ARIMA and the Random Walk. MLP

networks presented poorer results, as expected, while applying LSTM lead to consistent im-

proves on forecasts. The implemented BiLSTM surpasses the traditional LSTM, presenting the

best results between the ANNs and proving it is a good fit to financial time series. An enhanced

BiLSTM, by adding Google Trends data to the inputs, lead to the best overall results, beating

the state of the art for several samples, with impressive results especially on forecasting future

directions to next step closing prices, which may be used by investors in their decision process.

Cryptocurrencies exchange rates present itself as very volatile, with very different behaviours

depending on time period. The implemented sample division addressed these changes but in

sample variations also represented difficulties. Combined with the clear non-stationarity of the

data, this lead the ANN models with a rather complex situation in fitting to available data. In

some cases validation losses failed to decrease even with a very careful hyperparameter se-

lection, in that case refitting the model was necessary. Additionally, Computational resources

limited number of experiments and may provide additional limitations for a larger set of in-

put variables. These limitations imply on less possibilities on hyperparameter tuning and less

complexity on the models.

Further researches may consider applying different ANN architectures. As reviewed from

literature, mixed and convolutional models have already presented positive results (Alonso-

Monsalve et al., 2020). CNN-LSTM and ConvLSTM may be tested. Another important step is

the application of a more diverse set of variables as input to the networks and comparisons with

Autoregressive Integrated Moving Average with Exogenous Variables (ARIMAX) approach.

This step depends on availability of data for the set of cryptocurrencies. A selection process for

the variables may also apply, leading to networks with even better results.
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