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ON THE PREDICTABILITY OF HIGH AND LOW PRICES: THE CASE OF BITCOIN

1. INTRODUCTION

The Bitcoin (BTC), as the most popular cryptocurrency traded in the digital money markets,

showed a capitalization of about $40.5 billion by mid-2007, representing 89% of the capitaliza-

tion of all cryptocurrencies1. Launched in 2009, Bitcoin transactions are based on an informa-

tion technology infrastructure and on the lack of a central authority. Instead of relying on central

banks, a decentralized computer network validate the transactions and grow money supply of

Bitcoin (YERMACK, 2017). Users and investors have perceived huge financial potential in the

Bitcoin market, driving the Bitcoin price from US dollar parity in early 2011 to about 1,500

$/BTC in mid-2017. Further, the number of transactions using Bitcoin has increased consider-

ably. According to Polasik et al. (2015), the number of transactions per month using Bitcoin

increased from 12,000 to 2.1 million from August 2010 to August 2014 and in December 2015,

approximately 200,000 Bitcoin transactions were carried out per day.

Bitcoin particular features, as the absence of a regulatory agency, made the digital money a

volatile and speculative currency, resulting in a market quite sensitive to real (e.g., economic,

social and political) and fake (e.g., rumours) news. Also, as stated by Alvarez-Ramirez et al.

(2018) and Baek and Elbeck (2015), the poorly defined liquidity conditions of the market and

the lack of certainty rules for investment realization add fragility to transactions, an effect that

is reflected as large price jumps and excessive volatility as compared to traditional currencies

and assets. Besides, a literature on cryptocurrencies have emerged, most focused on the legal

aspects and underlying blockchain technology.

Some authors, for example, have discussed the efficiency of virtual money markets. Bartos

(2015) indicated that the Bitcoin returns follow the hypothesis of efficient markets by showing

its fast responses to publicly announced information. On the other hand, Urquhart (2016), based

on automatic variance tests, indicated that Bitcoin returns are significantly inefficient over the

period from August 1st, 2010 to July 31st, 2016. However, when the sample was split out into

two subsample periods, it was found that the Bitcoin market is efficient in the latter period –

August 1st, 2013 to July 31st, 2016.

By verifying empirically whether or not the existence of weekly price anomalies, Kurihara

and Fukushima (2017) stated that Bitcoin transactions are becoming more efficient, but the

Bitcoin returns do not fulfilled the efficient market hypothesis. Additionally, Urquhart (2017)

found significant evidence of price clustering at round numbers as a Bitcoin price anomaly.

Bariviera et al. (2017) used detrended fluctuation analysis (DFA) over a sliding window

to report that the Hurst exponent changed significantly during the first years of existence of

Bitcoin, tending to stabilize from early 2014 to date. Also using DFA, Alvarez-Ramirez et

al. (2018) estimated long-range correlations for price returns of Bitcoin. They found that the

Bitcoin market exhibits periods of efficiency alternating with periods where the price dynamics

are driven by anti-persistence.

The efficiency of Bitcoin market compared to gold, stock and foreign exchange markets

is evaluated in the work of Al-Yahyaee et al. (2018). The study found that the long-memory

feature and multifractality of the Bitcoin market was stronger and Bitcoin was therefore more

inefficient than the gold, stock and currency markets.

Works have also devoted attention to the analysis of Bitcoin volatility. Balcilar et al. (2017),

for example, analyzed the causal relation between trading volume and Bitcoin returns and

volatility. The causality-in-quantiles test reveals that volume can predict returns – except in

Bitcoin bear and bull market regimes. This result highlights the importance of modeling non-

linearity and accounting for the tail behaviour when analysing causal relationships between
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Bitcoin returns and trading volume.

Katsiampa (2017) explores the optimal conditional heteroskedasticity model with regards

to goodness-of-fit to Bitcoin price data. The author showed that the best model is the AR-

CGARCH model, highlighting the significance of including both a short-run and a long-run

component of the conditional variance. More recently, Lahmiri et al. (2018) investigated the

nonlinear patterns of volatility in seven Bitcoin markets. The empirical findings signify the ex-

istence of long-range memory in Bitcoin market volatility, irrespectively of distributional infer-

ence. The same applies to entropy measurement, which indicates a high degree of randomness

in the estimated series.

In general, the recent literature has stated that volatility of Bitcoin prices is an outcome of

market sentiments, where the latter can be attributed with the presence of significant ‘memory’

(KATSIAMPA, 2017; CHEAH et al., 2018; CHEAH & FRY, 2015; LAHMIRI et al., 2018).

This emerges from a key element in the determination of Bitcoin prices: the assumption of full

confidence of its users. Indeed, the literature has showed that Bitcoin is ideal for risk-averse

investors in anticipation of negative shocks to the market (DYHRBERG, 2016a) and could be

used as a hedging asset against market specific risk (DYHRBERG, 2016b).

Due to the evidence of long memory of Bitcoin volatility2, this work aims to investigate

whether or not the high and low prices of Bitcoin are predictable and which approach is ap-

propriate to model these prices. Although many research has been devoted to the analysis of

the predictability of daily market closing prices, few studies based on econometric time series

models examined the case of high and low prices, as for instance the works of Barunı́k and

Dvořáková (2015), Caporin et al. (2013), Cheung et al. (2010), Cheung et al. (2009), He and

Hu (2009), and Cheung (2007). Indeed, Caporin et al. (2013) argue that the lack of studies

regarding daily high and low asset prices is surprising for at least three reasons: i) the long

histories of high and low prices data are readily available; ii) many technical analysis strategies

use high and low prices to construct resistance and support levels; iii) these prices can mesure

market liquidity and transaction costs.

In particular, daily high and low prices provide valuable information regarding the dynamic

process of an asset throughout time. These prices can be seen as references values for investors

in order to place buy or sell orders, e.g. through candlestick charts, a popular technical indicator

(XIONG et al., 2017; CHEUNG & CHINN, 2001). He and Wan (2009) also stated that the

highs and lows are referred to prices at which the excess of demand changes its direction.

Additionally, high and low prices are related with the concept of volatility. Alizadeh et al.

(2002) show that the difference between the highest and lowest (log) prices of an asset over a

fixed sample interval, also known as the (log) range, is a highly efficient volatility measure3.

Brandt and Diebold (2006) and Shu and Zhang (2006) pointed out that the range-based volatility

estimator appears robust to microstructure noise such as bid-ask bounce, which overcomes the

limitations of traditional volatility models based on closing prices that fall to use the information

contents inside the reference period of the prices, resulting in inaccurate forecasts.

In addition, daily highs and lows can be used as stop-loss bandwidths, providing information

about liquidity provisioning and the price discovery process. According to Caporin et al. (2013),

high (low) prices are more likely to correspond to ask (bid) quotes; thus, transaction costs

and other frictions, such as price discreteness, the tick size (i.e., the minimal increments) or

stale prices, might represent disturbing factors. Finally, high and low prices are more likely

to be affected by unanticipated public announcements or other unexpected shocks. Therefore,

aspects such as market resiliency and quality of the market infrastructure can be determinant

(CAPORIN et al., 2013).

Hence, this paper suggests a fractionally cointegrated vector autoregressive model (FC-
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VAR), as proposed by Johansen (2008) and Johansen and Nielsen (2010, 2012), to model and

predict the relationship between Bitcoin highs and lows. The motivation of this approach is

twofold. First, FCVAR modeling is able to capture the cointegrating relationship between high

and low prices, i.e. in the short-term they may diverge, but in the long-term they have an em-

bedded convergence path. Second, the range (the difference between high and low prices), as

an efficient volatility measure, is assumed to display a long memory, which allows for greater

flexibility4. As stated by Barunı́k and Dvořáková (2015), a more general fractional or long-

memory framework, where the series are assumed to be integrated of order d and cointegrated

of order less than d, i.e. CI(d −b), where d,b ∈ ℜ and, 0 < b ≤ d, is more useful in capturing

the empirical properties of data, in accordance on the evidence of long memory in the volatility

of Bitcoin returns (KATSIAMPA, 2017; CHEAH et al., 2018; CHEAH & FRY, 2015; LAH-

MIRI et al., 2018). Therefore, the FCVAR framework has the advantage of modeling both the

cointegration between highs and lows, and the long-memory property of the range. The results

are then compared against traditional benchmarks over different prediction horizons.

This paper is outlined as follows. Section 2 describes the data and provides a preliminary

analysis of daily high and low Bitcoin prices and the range, focusing on their integration, coin-

tegration, and long memory properties. A FCVAR model for high and low Bitcoin prices is

presented in Section 3. The predictability analysis is discussed in Section 4. Finally, Section 5

concludes the work and suggests topics for future investigation.

2. ANALYSIS OF DAILY HIGH AND LOW BITCOIN PRICES

This section describes the database and provides an analysis regarding the integration, coin-

tegration and long memory properties of daily high and low Bitcoin prices and their diference,

the range. Further, tests for the possible fractional cointegration relationship between highs and

lows are also presented.

2.1 Database

The dynamic properties and the predictability of daily high and low Bitcoin prices are inves-

tigated considering the period from January 1st, 2012 to February 28th, 2018 within a total of

2,251 observations5. Low and high prices of Bitcoin (BTC) to US dollar (USD) rate exchange

data were collected from the web site www.coindesk.com.

We consider the daily high log-price, pH
t = log(PH

t ), the daily low log-price, pL
t = log(PL

t ),
and the daily range Rt = pH

t − pL
t , where PH

t and PL
t are the high and low prices at t, respectively.

Figure 1 shows the BTC/USD exchange rate low and high log-prices for daily frequency. To

improve visibility, the daily lows log-prices in Figure 1 are the actual daily low log-prices minus

0.25. The decrease of prices after May 2013 was derived from the failure of Mt. Gox to protect

transaction details which also provoked the suspension of trading6. From early 2016 to date,

the Bitcoin market experienced a significant growth as a result of the subsequent implementa-

tion of cryoptosystems to guarantee transaction privacy stabilized the Bitcoin exchange system.

Clearly daily highs and lows dynamic suggests the presence of a common trend, indicating that

the series are non-stationary and cointegrated. Figure 2 depicts the temporal evolution of the

high and low log-prices difference, i.e. the range. It is worth to note that higher values of the

range are associated with the periods of high prices variability, confirming its property as a

volatility measure.
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Figure 1. High and low log-prices of Bitcoin to US dollar rate exchange.
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Figure 2. Daily range of Bitcoin.

2.2 Cointegration and memory properties of Bitcoin highs and lows

To analyze the properties of the daily high and low log-prices and the range of Bitcoin,

we first evaluate the stationarity of the series. Table 1 provides the Augmented Dickey-Fuller

(ADF) (DICKEY & FULLER, 1979) test results for the daily high and low log-prices (pH
t and

pL
t ) as well as the range (Rt), revealing expected findings. Daily high and low prices are unit

root processes, i.e. they are non-stationary, under a 0.05 significance level. The daily range is a

stationary process, which indicates that daily high and low prices may be cointegrated. Despite

these results, it worth to mention that the ADF test is designed to evaluate the null hypothesis

of a unit root against the I(0) alternative, i.e. it has very low power against fractional processes.

Table 1. P-values of ADF test for unit root for high (H) and low (L) log-prices and range (R) of

Bitcoin based on levels and first-differences, where c denotes the inclusion of a constant only,

t the additional inclusion of a trend for daily high and low log-prices in levels only, and lags

the number of lags included in the model, based on the Bayesian Information Criteria (BIC)

(SCHWARZ, 1978).

Model Lags
ADFH ADFL ADFR

Level First-differences Level First-differences Level

c, t 2 0.5847 0.0000 0.6431 0.0001 0.0001

In addition to the ADF test, we performed the KPSS test of Kwiatkowski et al. (1992),

appropriate in situations when the tested series are close to being a unit root. The KPSS test
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results, reported in Table 2, confirm the non-stationarity of the high and low log-prices. How-

ever, regarding the range, the results from the KPSS test indicates the presence of a unit root,

while the ADF test suggests that the range is stationary. This conflicting results may be caused

by the possible long memory property of the range. The results from Table 2 present the KPSS

test p-values concerning short lags and long lags in the model. Notice that the results for high

and low log-prices for both short and long lags confirm the non-stationarity of the series. On

the other hand, when long lags are concerned, the KPSS test results suggest that the range is

stationary at a 0.05 significance level. This finding provides evidence on the long memory of

the range of Bitcoin prices.

Table 2. P-values of KPSS test for unit root for high (H) and low (L) log-prices and range (R)

of Bitcoin based on levels and two lag specifications, short lag and long lag, where c denotes

the inclusion of a constant only, t the additional inclusion of a trend for daily high and low

log-prices in levels only.

Model
KPSSH KPSSL KPSSR

Short lag Long lag Short lag Long lag Short lag Long lag

c, t 0.0000 0.0001 0.0001 0.0001 0.0001 0.0892∗

(∗) indicates stationarity at a 0.05 significance level.

Figure 3 shows the autocorrelation function (ACF) of the Bitcoin range. A high degree

of persistence is verified, with significance autocorrelations even after 30 lags, confirming the

results of the KPSS test and the evidence of long memory of the stock price ranges. This

persistence can also be found in the autocorrelation function of the Bitcoin squared range as

depicted in Figure 4.
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Figure 3. ACF of daily range of Bitcoin.
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Figure 4. ACF of daily squared range of Bitcoin.
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Similar results on the unit root processes of daily high and low asset prices and the station-

arity of the range were also found by Cheung (2007(. Therefore, the author suggested a Vector

Error Correction Model (VECM) for high and low log-prices. However, due to the high degree

of persistence of the range, traditional cointegration analysis may not be satisfactory in explain-

ing the relationship between high and low prices, as already verified by Barunı́k and Dvořáková

(2015) and Caporin et al. (2013), giving rise to the use of the fractionally cointegration frame-

work.

2.3 Testing the fractional cointegration order

The modeling of daily high and low prices as a cointegrated relationship has a particular

feature: the “error correction” term, the range, may contain long memory. Differently from

Cheung (2007) that used a VECM modeling approach, Barunı́k and Dvořáková (2015) and

Caporin et al. (2013) proposed a fractionally cointegrated model to capture this feature for

equity prices. The previous results from Bitcoin high and low prices also suggest the use of the

fractional cointegration framework.

Let Xt ≡ (pH
t , pL

t )
′ be a vector composed by the high and low Bitcoin prices, pH

t and pL
t ,

respectively. If the elements of Xt are I(1) and exists a linear combination β′Xt that is an I(0)
process, Xt is said a cointegrated vector. Robinson and Yajima (2002) indicated that besides the

existence of a stable relationship between non-stationary series Xt , i.e. in the short-term they

may diverge, but in the long-term they have an embedded convergence path, does not depend on

whether the series are I(1). Therefore, to relax the restriction on the choice between stationary

I(0) and non-stationary I(1) processes, the series can be considered an I(d) process with d ∈ ℜ,

where d is the fractional differencing parameter, fractional degree of persistence or fractional

order of integration.

The series Xt is an I(d) process if ut = (1−L)dXt is I(0), with L standing for the lag operator

and d < 0.5 (ROBINSON & YAJIMA, 2002). If d ≥ 0.5, Xt is defined as a non-stationary I(d)
series with Xt = (1−L)−dutI{t ≥ 1}, where t = 0,±1,±2, . . ., and I{·} is an indicator function.

For d > 0 (d < 0) the process has long-memory (anti-persistence). If d = 0, the process collapses

to the random walk, i.e. a stationary process.

To test the fractional order of integration of high and low log-prices and the range of Bit-

coin, we employed the univariate exact local Whittle (ELW) estimator, as a semi-parametric

approach, proposed by Nielsen and Shimotsu (2007). The method is consistent in the presence

of absence of cointegration, and also to both stationary and non-stationary cases. The univariate

local exact Whittle estimators for high, lows and the range (d̂H , d̂L and d̂R, respectively) are

found by minimizing the following contrast function:

Qmd
(di,Gii) =

1

md

md

∑
j=1

[

log
(

Giiλ
−2di

j

)

+
1

Gii
I j

]

, i = H,L,R, (1)

which is concentrated with respect to the diagonal element of the 2× 2 matrix G, a finite and

nonzero matrix with strictly positive diagonal elements. Under the hypothesis that the spectral

density of Ut = [∆dH
pH

t ,∆
dL

pL
t ,∆

dR
Rt ], G satisfies:

fU(λ)∼ G as λ → 0, (2)

where fU(λ) is the spectral density matrix, I j the coperiodogram at the Fourier frequency

λ j =
2π j
T

of the fractionally differenced series Ut , md is the number of frequencies used in

the estimation, and T is the sample size (CAPORIN et al., 2013). The matrix G is estimated as:
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Ĝ =
1

md

md

∑
j=1

Re(I j), (3)

with Re(I j) standing for the real part of the coperiodogram.

The estimates of the fractional integration order do not imply the presence or absence of

cointegration. To test the equality of integration orders, H0 : dH = dL = d, we also employed

the test suggested by Nielsen and Shimotsu (2007), which is robust to the presence of fractional

cointegration. In the bivariate case under study, the test statistic is (NIELSEN & SHIMOTSU,

2007):

T̂0 = md(Sd̂)′
(

S
1

4
D̂−1

(

Ĝ⊙ Ĝ
)

D̂−1S′+h(T )2

)−1
(

Sd̂
)

, (4)

where ⊙ is the Hadamard product, d̂ = [d̂H , d̂L], S = [1,−1]′, h(T ) = log(T )−k for k > 0,

D = diag(G11,G22).
According to Nielsen and Shimotsu (2007), if the variables are not cointegrated, i.e. the

cointegration rank is r = 0, T̂0 → χ2
1, while if r ≥ 1, the variables are cointegrated and T0 → 0.

For significant large values of the test statistic T̂0 with respect to the null density χ2
1, it evidences

against the null hypothesis of the equality of integration orders.

The first six columns of Table 3 display the ELW estimates of d̂H , d̂L and d̂R for the Bitcoin,

where the exponent denotes daily high (H), daily low (L) and daily range (R). The estimates

of integration orders were calculated base on two specifications of bandwidth, md = T 0.5 and

md = T 0.6, as in the works of Nielsen and Shimotsu (2007), Caporin et al. (2013), and Barunı́k

and Dvořáková (2015). For both bandwidths, the order of integration of daily highs and lows

are generally high and close to 1, indicating that the series are not stationary. The difference

between high and low prices (the range) is mostly non-stationary (d > 0) and displays long

memory with parameter d̂R < 0.5, in accordance with the previous findings from the ACF of

the range (Figures 3 and 4). Concerning the bandwidth parameter, the results are not signifi-

cantly sensitive. Summarizing, the daily high and low Bitcoin prices are not stationary and the

range displays long memory, in line with the results of Caporin et al. (2013) and Barunı́k and

Dvořáková (2015).

Table 3. Estimates of the fractional order of integration parameter d of high (d̂H) and low (d̂L)

log-prices and the range (d̂R) of Bitcoin using the exact local Whittle (ELW) estimator, and

test statistics for the equality of integration orders (T̂0). All estimates use both md = T 0.5 and

md = T 0.6 as bandwidths.

ELWmd=T 0.5 ELWmd=T 0.6 T̂0

d̂H d̂L d̂R d̂H d̂L d̂R md = T 0.5 md = T 0.6

0.9524 0.9361 0.3982 0.8973 0.8819 0.4113 0.1207 0.2238

Regarding the test for the equality of integration orders, the last two columns of Table 3

presents the test statistics estimated with md = T 0.5 and md = T 0.6 as bandwidth parameters.

Since the critical value of χ2
1 is 2.71 in a 90% confidence interval, the null hypothesis of equality

of the integration orders cannot be rejected for both bandwidth parameters. The results suggest

that a FCVAR modeling approach with the same degree of integration orders dH = dL is appro-

priate for estimating the relationship between the daily high and low prices of Bitcoin. Notice

that the generalization to the presence of fractional cointegration between highs and lows is

novel for the modeling of Bitcoin.
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3. FCVAR MODELING FOR DAILY HIGH AND LOW BITCOIN PRICES

The fractionally cointegrated vector autoregression (FCVAR), formalized by Johansen (2008)

and Johansen and Nielsen (2010, 2012), generalizes the classical cointegration analysis by al-

lowing Xt to be fractional of order d and cofractional of order d − b, which conducts that β′Xt

should be fractional of order d − b ≥ 0. This framework allows for the existence of a com-

mon stochastic trend, integrated with order d, and the short-term divergences from the long-run

equilibrium integrated of order d −b. The parameter b is the strength of the cointegrating rela-

tionships, called as the cointegration gap (a higher b means less persistence in the cointegrating

relationships).

In the FCVAR modeling approach, the usual lag operator and the difference operator are re-

placed by the fractional lag operator and the fractional difference operator, Lb = 1−∆b and ∆b =
(1− L)b, respectively (JOHANSEN & NIELSEN, 2012; NIELSEN & MORIN, 2016). The

fractional difference operator is defined by the binomial expansion ∆bZt = ∑∞
n=1 (−1)n

(

b
n

)

Zt−n

(BARUNÍK & DVOŘÁKOVÁ, 2015). Thus, the model is applied to Zt = ∆d−bXt . A fraction-

ally cointegrated vector autoregressive FCVARd,b(p) model for Xt ≡ (pH
t , pL

t )
′ as the vector of

high and low prices is described as:

∆dXt = ∆d−bLbαβ′Xt +
p

∑
i=1

Γi∆
dLi

bXt + ε, t = 1, . . . ,T, (5)

where α and β are 2× r matrices comprised by the long-run parameters, 0 ≤ r ≤ 2, the rank r

is termed the cointegration, or cofractional, rank, d ≥ b > 0, Γ = (Γ1, . . . ,Γp) are the autore-

gressive augmentation parameters related to the short-run dynamics, and εt is an p-dimensional

i.i.d (0,Ω), with positive-definite variance matrix Ω.

The columns of β constitute the r cointegration (cofractional) vectors such that β′Xt are

the cointegrating combinations of the variables in the system, i.e. the long-run equilibrium

relations. The parameters in α are the adjustment or loading coefficients which represent the

speed of adjustment towards equilibrium for each of the variables (NIELSEN & MORIN, 2016).

If d−b < 0.5, β′Xt is asymptotically a zero-mean stationary process. Denoting Π = αβ′, where

the 2× r matrices α and β with r ≤ 2 are assumed to have full column rank r, the columns of β
are then the r cointegrating (cofractional) relationship determining the long-run equilibrium.

Non-zero mean data, Yt = µ+Xt for example, can be considered as ∆aYt = ∆a(µ+Xt) =
∆aXt , since ∆a1 = 0 for a > 0. Thus, this means that the model with d > b is invariant to the

inclusion of a restricted constant term ρ. As in Barunı́k and Dvořáková (2015), the inclusion of

a constant term is considered only in the model with d = b, which replaces the formulation in

(5) by:

∆dXt = Ldα(β′Xt +ρ′)+
p

∑
i=1

Γi∆
dLi

bXt + ε, t = 1, . . . ,T, (6)

where ρ is the restricted constant term µ = αρ′, interpreted as the mean level of the long-run

equilibrium.

The model parameters are estimated by maximum likelihood as described in Nielsen and

Morin (2016). Before estimating the FCVAR models for daily high and low prices of Bitcoin,

it is required the use of an appropriate approach to test and determine the cointegration rank in

the model, described as follows.

3.1 Cointegration rank

Cointegration rank testing in the presence of long memory differs from traditional tests for

integration Johansen (1991). A time series Xt is fractionally cointegrated CI(d,b) if Xt has I(d)
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elements and for some b > 0, exists a vector β such that β′Xt is integrated of order (d −b). We

first applied the cointegration rank test proposed by Nielsen and Shimotsu (2007), that allows

for both stationary and non-stationary fractionally integrated processes. The test is based on the

exact local Whittle estimate of d, used to examine the rank of the spectral density matrix G and

its eigenvalues. In the bivariate case under study, the test estimates the rank r by:

r̂ = arg min
u=0,1

L(u), (7)

where

L(u) = v(T )(2−u)−
2−u

∑
i=1

δ̂i, (8)

for some v(T )> 0 which satisfies

v(T )+
1

m
1/2
L v(T )

→ 0, (9)

with δ̂i as the i-th eigenvalue of Ĝ, and mL a new bandwidth parameter.

The estimation of matrix G involves two steps. First, d̂H and d̂L are obtained first using (1)

with md as bandwidth parameter. Given d̄∗ = (d̂H + d̂L)/2, the matrix G is estimated as follows:

Ĝ =
1

mL

mL

∑
j=1

Re(I j), (10)

such that mL/md → 0. The estimates of G are robust to all different choices of md and mL

(NIELSEN & SHIMOTSU, 2007).

Table 4 displays the results of the cointegration rank test of Nielsen and Shimotsu (2007)

using md = T 0.6 and mL = T 0.5 for both cases where v(T ) = m−0.45
L and v(T ) = m−0.05

L . The

results suggest that there is one cointegration relationship. It is worth to note that L(1) < L(0)
and this can be taken as strong evidence in favor of fractional cointegration between pH

t and pL
t

so that the expression in (7) is minimized in correspondence of r = 1.

Table 4. Estimates of the fractional cointegration rank test statistics and their respective eigen-

values by the approach of Nielsen and Shimotsu (2007) using d̄∗, the average of the estimated

integration orders of daily high and low Bitcoin prices from the ELW estimator with md = T 0.6

as bandwidth parameter, in the fractional cointegration analysis for both v(T ) = m−0.45
L and

v(T ) = m−0.05
L , with mL = T 0.5.

Rank estimates

Eigenvalues v(T ) = m−0.45
L v(T ) = m−0.05

L

d̄∗ δ̂1 δ̂2 L(0) L(1) r̂ L(0) L(1) r̂

0.9442 0.2982 0.0004 -1.3201 -1.7822 1 -0.4297 -1.2033 1

In addition, the cointegration rank test proposed by Johansen and Nielsen (2012) was also

considered. In the FCVAR framework, the hypothesis Hr : rank(Π) = r is tested against the al-

ternative Hn : rank(Π) = n. Let L(d,b,r) be the profile likelihood function given rank r, where

(α,β,Γ) have been concentrated out by regression and reduced rank regression (NIELSEN &

MORIN, 2016). For the model with a constant, the test concerns the hypothesis Hr : rank(Π,µ)=
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r against Hn : rank(Π,µ) = n, with L(d,r) as profile likelihood function given rank r, where the

parameters (α,β,ρ,Γ) have been concentrated out by regression and reduced rank regression.

The profile likelihood function is maximized both under the hypothesis Hr and under Hn

considering the LR test statistic computed as follows:

LR(q) = 2 log
(

L(d̂n, b̂n,n)/L(d̂r, b̂r,r)
)

, (11)

where q = n− r and

L(d̂n, b̂n,n) = max
d,b

L(d,b,n), and L(d̂r, b̂r,r) = max
d,b

L(d,b,r). (12)

The asymptotic distribution of LR(q) depends qualitatively (and quantitatively) on the pa-

rameter b. In the case of “weak integration”, 0 < b < 0.5, LR(q) has a standard asymptotic

distribution (NIELSEN & MORIN, 2016):

LR(q)
D
−→ χ2(q2), 0 < b < 0.5. (13)

Otherwise, in the case of “strong cointegration”, when 0.5 < b ≤ d, asymptotic theory is

nonstandard and

LR(q)
D
−→ Tr

{

∫ 1
0 dW (s)F(s)′

(∫ 1
0 F(s)F(s)′ds

)−1 ∫ 1
0 F(s)dW (s)′

}

, b ≥ 1/2, (14)

where the vector process dW is the increment of ordinary (non-fractional) vector standard Brow-

nian motion of dimension q = p− r (NIELSEN & MORIN, 2016). The vector process F de-

pends on the deterministic in a similar way as in the CVAR model in Johansen (1995). In

the model with no determinist term F(u) = Wb(u), otherwise, if the restricted constant term is

included in the model, then F(u) =
(

W ′
b(u),1

)′
, where Wb(u) = Γ(b)−1

∫ u
0 (u− s)b−1dW (s) is

vector fractional type-II Brownian motion.

Table 5 shows the results of the cointegration test of Johansen and Nielsen (2012) and a

significant cointegration relationship was found. For r = 0, larger values of the likelihood

ratio (LR) statistics indicates the rejection the null hypothesis of zero cointegrating relationship.

Otherwise, when r = 1, the LR statistics are smaller and the corresponding p-values indicate

that we cannot reject the null of one cointegrating relationship.

Table 5. Likelihood ratio (LR) statistics and p-values from the cointegration test by Johansen

and Nielsen (2012) for each rank r = 0,1,2, as well as the corresponding estimates of the

parameter of the fractional order of integration (d̂) and the parameter of the cointegration gap

(b̂) for Bitcoin high and low prices.

r = 0 r = 1 r = 2

d̂ b̂ LR p-value d̂ b̂ LR p-value d̂ b̂

0.6892 0.6101 29.9827 0.000 0.9446 0.5987 0.1455 0.7255 0.9972 0.6212

3.2 Empirical FCVAR model for Bitcoin highs and lows

Based on the previous evidence of one significant cointegrating vector for the high and low

prices of Bitcoin, a fractionally cointegrating VAR (FCVAR) model was estimated. We set

p = 1 for the short-term deviations, which is sufficient to capture the autocorrelation of the
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residuals. Also, as stated by MacKinnon and Nielsen (2014), a single lag is usually sufficient

in the fractional model, in contrast with the standard cointegrated VAR where more lags are

required to account for the serial correlation in the residuals. The FCVAR model was estimated

for the case when d 6= b, since all estimates reported earlier rejects the hypothesis where d and

b are close to equality (see Table 5).

Table 6 reports the FCVAR estimates for the high and low prices of Bitcoin. Parameters

estimates of the fractional integration order and the cointegration gap, d̂ and b̂ respectively, are

significantly different from zero and different from each other. Estimate of d̂ indicates that daily

high and low prices are integrated of an order close to the unity. Regarding the cointegrating

vector, β̂, the estimates are very close to the vector [1,−1]. Since the range is defined as the

difference between the high and low daily prices, i.e. (pH
t − pL

t ), it is expected the cointegrating

vector to be [1,−1]. The results suggest that a linear combination of the daily high and low

prices (the range) is integrated of a non-zero order, and the range is in the stationary region

(d−b < 0.5). This finding differs from the one obtained by Barunı́k and Dvořáková (2015) and

Caporin et al. (2013), where the ranges of equities fall mostly in the non-stationary region.

The estimates of the adjustment coefficients, α̂H and α̂L, which describe the speed of adjust-

ment of pH
t and pL

t toward equilibrium, are significantly different from zero (Table 6). Parame-

ter α̂H is negative and α̂L is positive, indicating that they move in opposite directions to restore

equilibrium after a shock to the system occurs. Considering the absolute value of theses pa-

rameters estimates, α̂H is greater than α̂L, implying that the correction in the equation for daily

highs overshoots the long-run equilibrium. These results were also verified by Barunı́k and

Dvořáková (2015) and Caporin et al. (2013) considering the analysis of equity prices, however,

in more than 50% of the cases α̂H estimates were smaller than α̂L.

Table 6. FCVAR model estimates results. Standard errors are shown below the parameters

estimates in brackets.

d̂ b̂ β̂ α̂H α̂L γ̂11 γ̂12 γ̂21 γ̂22

0.9649 0.5841 [1,-0.9980] -0.1682 0.0936 -0.0167 0.2562 0.1918 0.1360

(0.0290) (0.0546) (0.0200) (0.0178) (0.0322) (0.0382) (0.0271) (0.0360)

Concerning the short-run dynamics parameters estimates Γ1 = (γ̂11, . . . , γ̂22), according to

Table 6, the coefficients of the lagged daily highs and lows are mostly positive, which suggests

an indication of spill-over effects7. Finally, the residuals were also tested for the remaining au-

tocorrelation and heteroskedasticity. In most cases, the null of no autocorrelation was rejected

according to the Ljung-Box Q-test, but based on the visualization of the autocorrelation func-

tions, the dependency is weak, and it disappears after the second lag. Some heteroskedasticity

was also detected by the autocorrelation function of squared residuals, however, it is very weak.

4. PREDICTABILITY OF DAILY HIGH AND LOW BITCOIN PRICES

Besides the advantages of describing the dynamics of high and low Bitcoin prices and their

difference, the range, the forecasting ability of the FCVAR modeling framework is also exam-

ined. Forecasts were performed using the FCVAR in an out-of-sample set comprised by the

last two years of data. As competing models, we consider the VECM model of Cheung (2007);

the random walk, RW; the ARIMA model; the 5-day moving average, MA5; and the 22-day

moving average, MA22; the latter two of which correspond to weekly and monthly averages

respectively and are very employed by technical analysts.

The Diebold and Mariano (1995) test is carried out to measure the forecasting superiority of

the FCVAR, focusing on the mean squared error (MSE) of the forecasts. The error of the model

11



i for the h-step ahead forecasting horizon is defined by:

εH
t+h,i = pH

t+h − p̂H
t+h,i, (15)

for the daily high, and

εL
t+h,i = pL

t+h − p̂L
t+h,i, (16)

for the daily low, with i = FCVAR,VECM,RW,ARIMA,MA5,MA22, where pH
t (pL

t ) and p̂H
t

( p̂L
t ) are the actual and predicted high (low) Bitcoin prices at t.

It is worth noting that not only one-step-ahead forecasting is performed to assess the predic-

tion performance of fractionally cointegration models for high and low Bitcoin prices, as made

by Caporin et al. (2013) concerning asset prices, but also five- and ten-step-ahead forecast-

ing are performed to examine the medium- and long-term forecasting ability of the empirical

FCVAR and selected competitors.

Table 7 shows ranking results of the Diebold and Mariano (1995) test for the out-of-sample

forecasts of daily high and low Bitcoin log-prices obtained using the FCVAR against the bench-

mark models. From the experimental results obtained, the FCVAR approach consistently out-

performs all of other competitors (Table 7). The rankings from best to worst are: FCVAR,

VECM, ARIMA, RM, MA5, MA22. As far as the comparison between the FCVAR and VECM,

the former presents better results. As expected, the moving average methodologies performed

worst. When comparing the performance of each method across the three prediction horizons

(i.e., 1, 5, and 10), the superior performance of FCVAR over the remaining methods is still ver-

ified. However, predictions of FCVAR and VECM tend to be equally accurate with the increase

in prediction horizon. Summing up, the results indicate the predictability of the daily high and

low prices of Bitcoin. Moreover, the use of a long memory framework such as the FCVAR do

improve forecasting performance in short- and long-term prediction horizons.

Table 7. Forecasting models ranking from Diebold-Mariano test for high and low Bitcoin

prices.

Price
Rank of methods

1 2 3 4 5 6

Panel A: one-step-ahead prediction horizon

High FCVAR >∗ VECM >∗ ARIMA > RW >∗ MA5 > MA22

Low FCVAR >∗ VECM >∗ ARIMA > RW >∗ MA5 > MA22

Panel B: five-step-ahead prediction horizon

High FCVAR >∗ VECM >∗ ARIMA > RW >∗ MA5 > MA22

Low FCVAR > VECM >∗ ARIMA > RW >∗ MA5 > MA22

Panel C: ten-step-ahead prediction horizon

High FCVAR > VECM >∗ ARIMA > RW >∗ MA5 > MA22

Low FCVAR > VECM >∗ ARIMA > RW >∗ MA5 > MA22

(∗) indicates the mean difference between the two competing methods is signifi-

cant at the 5% level.

Finally, Figure 5 illustrates the performance of FCVAR modeling framework for daily high

and low Bitcoin forecasting candlesticks, based on the observed prices with the corresponding

predicted high-low bands by FCVAR for the last three months of data considering one-step-ahed

predictions. It is interesting to note that FCVAR provide a good fit of the high-low dispersion,
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indicating the potential of the proposed method which can enhances chart analysis, a tool often

used by technical traders.
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Figure 5. Bitcoin candlesticks and FCVAR predicted high-low bands.

5. CONCLUSION

This work evaluated the predictability and dynamic properties of daily high and low Bitcoin

prices. The modeling of daily high and low prices considered a fractionally cointegrated VAR

model (FCVAR), which accounts for two fundamental patterns of these prices: their cointegrat-

ing relationship and the long-memory of their difference (i.e., the range), as the error correction

term is allowed to fall into a non-stationary region. The empirical analysis examined daily high

and low prices of Bitcoin (BTC) to US dollar (USD) rate exchange during the period from

January 2012 to February 2018. The findings indicate that daily high and low Bitcoin prices

are integrated of an order close to the unity, and the range displays long memory and is in the

stationary region. A significant cointegration relationship was found between daily high and

low prices. The empirical FCVAR model shows that high and low prices move in opposite

directions to restore equilibrium after a shock to the system occurs. Also, the results evidence

the predictability of daily highs and lows of Bitcoin for different forecasting horizons, in which

the fractionally approach conducts to better predictions than competitive methods. Future work

shall include the estimation of the FCVAR with the restriction on the cointegrating vector β to

be (1,−1), which allows the interpretation of the difference (d −b) as the order of integration

of the range. The evaluation of forecasts using an economic criteria, e.g. through a trading

strategy, is also demanding and compelling, mainly considering intradaily trading.

Notes

1. Other cryptocurrencies, based on blockchain technology, are for example the Litecoin (LTC),

Ethereum (ETH), Ripple (XRP). In the website https://coinmarketcap.com/currencies/

up to 641 of such monies can be found.

2. The literature have also presented substancial evidence of long memory in the volatility pro-

cess of asset prices, interest rate differentials, inflation rates, forward premiums and exchange

rates (YALAMA & CELIK, 2013; GARVEY & GALLAGHER, 2012; BREIDT et al., 1998;

ANDERSEN & BOLLERSLEV, 1997).

3. The literature that considers the high-low range price as a proxy for volatility dates back to

the 1980s with the work of Parkinson (1980).

4. The literature considers asset prices to be integrated of order 1, i.e. I(1). However, the

choice between stationary, I(0), and non-stationary, I(1), processes can be too restrictive for the
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degree of integration of daily high and low prices (BARUNÍK & DVOŘÁKOVÁ, 2015). Since

these prices can be considered as a possibly fractionally cointegrated relationship, it improves

flexibility, mainly when the error correction term from the cointegrating relationship between

high and low prices is the range (CHEUNG, 2007; FIESS & MACDONALD, 2002).

5. We begin the analysis in 2012 since in this period the prices of Bitcoin start to show some

relevant volatility.

6. In the early stage (2010–2013), Bitcoin exchange was handled by Mt. Gox, an administration

system based on Shibuya, Japan. By the last months of 2013, Mt. Gox was handling about 70%

of transactions worldwide.

7. Cheung (2007) states that negative coefficients imply a regressive behavior, whereas positive

coefficients are an indication of spill-over effects. In this case, higher daily highs tend to fall to

a lower level, lower daily highs tend to drift up to a higher level, and higher daily lows lead to

higher daily highs (BARUNÍK & DVOŘÁKOVÁ, 2015).
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