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Aplicação de Modelos de Séries Temporais para a Gestão de Risco do Mercado de 

Criptomoedas  

Applying Time Series Models to Risk Management in the Cryptocurrency Market 

RESUMO 

Este estudo investigou o uso de modelos ARMA-GARCH para gerenciamento de risco em 

criptomoedas, focando nas 10 principais moedas com mais de 5 anos de histórico, excluindo 

stablecoins. Foram realizadas extensivas análises de variações de modelagens ARMA-GRACH 

para identificar modelos que minimizassem erros médios absolutos, obtendo MAPEs inferiores 

a 1%. Os resultados indicaram taxas de sucesso superiores a 95% na estimativa de Value at 

Risk (VaR) e Expected Shortfall (ES), sendo o último o mais preciso em certos cenários. A 

inclusão de variáveis externas como Fear and Greed Index (FGI) e Market Value to Realized 

Value (MVRV) melhorou a performance do VaR para várias criptomoedas, embora o ES 

externo tenha sido mais eficaz apenas para o Bitcoin. A pesquisa também destacou a 

necessidade de adaptação dos modelos às características individuais de cada criptomoeda, dada 

a complexidade na seleção de parâmetros GARCH e distribuições de erros. Esses achados 

sublinham a importância de abordagens personalizadas para mitigação de riscos em um 

ambiente de mercado altamente volátil e diversificado como é do caso dos criptoativos. 
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ABSTRACT 

This study investigated the use of ARMA-GARCH models for risk management in 

cryptocurrencies, focusing on the top 10 currencies with more than 5 years of history, excluding 

stablecoins. Extensive variance analyses of ARMA-GRACH modelling were carried out to 

identify models that minimised mean absolute errors, obtaining MAPEs of less than 1%. The 

results indicated success rates of over 95 per cent in estimating Value at Risk (VaR) and 

Expected Shortfall (ES), the latter being the most accurate in certain scenarios. The inclusion of 

external variables such as Fear and Greed Index (FGI) and Market Value to Realised Value 

(MVRV) improved VaR performance for several cryptocurrencies, although external ES was 

more effective only for Bitcoin. The research also highlighted the need to adapt the models to 

the individual characteristics of each cryptocurrency, given the complexity in selecting 

GARCH parameters and error distributions. These findings underline the importance of 

personalised approaches to risk mitigation in a highly volatile and diversified market 

environment such as cryptoassets. 
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1 INTRODUCTION 

The current market scenario is marked by technological innovations, increased speed of 

information dissemination and the emergence of new products and services. The financial 

market, in particular, has undergone significant transformations driven by the internet, which 

has facilitated interactions and the sharing of information at reduced costs (Suryono et al., 

2020).  

One of the most notable innovations in the last decade has been the creation of 

cryptocurrencies, a new decentralised financial product that can be identified as a hybrid 

between a currency, commodities and a stock (Charfeddine et al., 2020). Bitcoin, developed by 

Nakamoto (2008) and launched in 2009, was responsible for inaugurating this new branch of 

the financial market and, due to its gain in popularity, several other cryptocurrency systems 

began to be developed and commercialised, known as altcoins. 

The rapid growth and global dissemination of cryptocurrencies has aroused academic 

interest, seeking to explain and understand the evolution of this new financial segment as well 

as finding ways to calibrate the addition of these new assets to investments. 

The aim of this study is to measure the risk of these assets by means of the Value-at-Risk 

(VaR) and Expected Shortfall (ES) of the 10 largest cryptocurrencies. To do this, volatility 

forecasting techniques using GARCH models were used.  

Three points stand out as differentiating features of this study: firstly, the use of 63 

variations of models from the GARCH family to produce VaR and ES, allowing the 

identification of the most suitable models for forecasts based on historical data; secondly - 

instead of using only the univariate data of the series - two external variables were also 

included, the Fear and Greed Index (FGI) and the Market Value to Realized Value (MVRV), 

with the aim of verifying whether adding these variables to the GARCH models enables better 

modelling of the volatility of the time series; finally, the number of cryptocurrencies analysed 

in the study was increased to 10, whereas empirical studies usually focus on 3-5 currencies. 

 

2 THEORETICAL FRAMEWORK 

2.1 Cryptocurrencies 

According to Lánský (2017), since the creation of Bitcoin by Nakamoto (2008), several 

investors have become interested in this new type of asset, mainly due to its unique 

characteristics such as: 

1. Being decentralised, i.e. not regulated by governments, banks or companies; 



2. The realisation of peer-to-peer transactions, eliminating the need for intermediaries 

and consequently part of the transaction costs; 

3. Use cryptographic techniques to secure transactions and protect the integrity of the 

network, as well as making transactions virtually anonymous between the parties; 

4. Blockchain system, which records all transactions made in a public ledger in order 

to avoid possible fraudulent transactions. 

Due to Bitcoin's rise in popularity and the spread of the blockchain system, new 

cryptocurrencies have been created and spread around the world, known as altcoins. These are 

generally designed to change some aspect of the system offered by Bitcoin. The main changes 

they propose concern the speed of transactions, changes to the mining system and the volume 

of availability (Gandal & Halaburda, 2014). 

However, as Wang et al. (2020) point out, the high degree of volatility in these assets ended 

up creating a barrier to investors making stable gains. With this in mind, the so-called 

stablecoins were created, cryptocurrencies that aim to peg their prices to currencies (Theter, 

BitUSD and Nubits, for example) or even commodities (HelloGold, DigixDAO and Xaurum, 

for example). 

Although this market is relatively new, it is still booming. In this sense, several new 

cryptocurrencies are created all the time, and in May 2024 there were a total of 10,043 

cryptocurrencies, totalling a capitalisation of around USD 2.5 trillion. Of this amount, around 

54.28 per cent corresponds to Bitcoins, 15.44 per cent to Etherium, 4.57 per cent to Tether, 3.53 

per cent to Binance and 3.19 per cent to Solana. Finally, Figure 1 shows the timeline of the 

main events related to this market. 

 

 

 

 

 

 

 

 

 



Figure 1 - Main Events in the Cryptocurrency Market

 

Source: The autors 

 

In general, one of the most important events for this market is Bitcoin's halving periods. 

This process occurs every time 210,000 blocks are added to the blockchain and affects the 

amount paid for the mining process, thus limiting the creation of more Bitcoins. Initially, the 

mining process was paid 50 BTC and with each halving this amount is divided by two. A total 

of four such processes have already taken place, the first in 2012, one in 2016 and another in 

2020, with the first half of 2024 being the last recorded halving. 

 Other important recent events for these markets include: the ban on cryptocurrency mining 

and transactions in China, causing a significant drop in prices; the collapse of LUNA, UST, 

crypto hedge fund Three Arrows Capital and FTX, which affected the degree of confidence in 

the cryptocurrency market; and the creation of CBDCs (Central Bank Digital Currencies), 

digital currencies created by central banks, which in principle goes against the decentralisation 

aspect of cryptocurrencies. 

 

2.2 Risk Measures 

Risk is essentially the possibility that the actual return on an investment will differ from 

the expected return. Markowitz (1952), a pioneer in modern portfolio theory, defines risk in 



terms of the volatility of returns, measured by metrics such as standard deviation and variance, 

which quantify the dispersion of results around the expected average. In this sense, risk 

management becomes an essential tool for making investment decisions, aimed at helping 

investors maximise their returns adjusted to a certain degree of risk that is compatible with their 

preferences. 

According to Acereda et al. (2020), Value-at-Risk (VaR) is one of the traditional measures 

most commonly used to measure the risk of an asset. It can be calculated using Equation 1, in 

which μ and σ are the mean and standard deviation of the asset in question and 𝑍𝛼  is the 

critical value of the normal distribution corresponding to the confidence level 𝛼�. 

𝑉𝑎𝑅𝛼 = �𝜇 + 𝜎 ∗ 𝑍𝛼      (1) 

In this way, this metric helps to identify the maximum loss value of an asset given an error 

tolerance. It is worth noting that VaR can also be calculated based on historical data or via 

simulation models. 

However, as criticised by Acerbi and Tasche (2002), this metric may not be the most 

suitable for analysing risk as it is limited to identifying the maximum potential loss. The 

authors therefore present Expected Shortfall (ES) as a more assertive alternative for risk 

management.  

Also known as Conditional Value-at-Risk (CVaR), it differs from traditional VaR in that ES 

estimates the average loss in worst-case scenarios in addition to VaR. In other words, ES 

calculates the average loss that exceeds VaR, providing a more complete view of extreme risk 

(Acerbi & Tasche, 2002; Artzner et al., 1999). In general terms, Equation 2 exemplifies the ES 

calculation method. 

𝐸𝑆𝛼 = �𝔼[𝑋|𝑋 > 𝑉𝑎𝑅𝛼] =
1

1−𝛼
∫ 𝑉𝑎𝑅𝛼
1−𝛼

0
     (2) 

 

It is worth noting that these methodologies originally defined asset returns as belonging to 

a normal distribution. However, empirical studies such as those by Malek et al.(2023) , Fung et 

al. (2022) Acereda et al. (2020) and Conlon and McGee (2020), identifying leptokurtic 

properties and asymmetries incompatible with Gaussian models, opted to use alternative 

distributions to describe cryptoasset returns, such as the stable alpha distribution, Student's t, 

Azzalini-Skew-T and inverse normal. In addition, these studies identified clusters of return 

volatility, so ARMA-GARCH models were used to model the heteroscedasticity of 

cryptocurrency returns. 

 



2.3 Previous studies 

In general, studies on the cryptoasset market can be divided into three groups: 

1. Analysing the characteristics of this market, comparing cryptocurrencies with 

financial assets such as commodities, shares and gold (Baur et al., 2018; Cai 

et al., 2023; Charfeddine et al., 2020); 

2. Analysing the efficiency of this market (Abreu et al., 2022; Kristoufek & 

Vosvrda, 2019; Urquhart, 2016); 

3. Analysing the volatility of these assets and their hedging capacity (Baur & 

Dimpfl, 2018; Hasan et al., 2024; Trimborn & Härdle, 2018). 

Of these three typologies, this study falls into the third group. In order to study the hedging 

properties of stablecoins, Wang et al. (2020) analysed the relationship between two groups of 

these cryptocurrencies, one linked to the dollar and the other to gold, and Bitcoin, Litecoin and 

Ripple using a GARCH model with dynamic conditional correlations (dccGARCH) by Engle 

(2002).  

As a result, the authors identified that stablecoins pegged to the dollar had a greater 

hedging capacity than the three traditional cryptocurrencies. Subsequently, in order to 

empirically verify this fact, portfolios were generated combining Bitcoin, Litecoin or Ripple 

with one of the stablecoins. Finally, the VaRs and ES of the portfolios were analysed, 

conforming to the hypothesis discussed above. 

In order to identify more efficient alternatives for modelling the volatility of Bitcoin, 

Litecoin, Ripple and Etherium, Acereda et al. (2020) estimated the ES using traditional 

GARCH modelling and three of its variations: component GARCH (csGARCH), non-linear 

GARCH (nGARCH) and threshold GARCH (tGARCH). 

The conclusions identified a better fit for the models when considering that cryptocurrency 

returns would follow an Azzalini-Skew-T distribution (AST), which is an extension of the t-

distribution that incorporates an additional parameter to control asymmetry. Furthermore, it was 

concluded that csGARCH and nGARCH models provided more assertive predictions for 

cryptocurrencies, especially Bitcoin. 

The study by Fung et al. (2022) draws an interesting conclusion about forecasting and risk 

analysis models. Analysing 8 different models from the GARCH family, the authors found that 

of the 254 cryptocurrencies analysed, around 1/3 of them had their returns best explained by a 

tGARCH model. However, when analysing the VaR of the returns, the authors report that the 

choice of an appropriate distribution for modelling the errors is more important for the accuracy 

of the VaR than the GARCH model itself. This reinforces similar conclusions, such as those of 



Troster et al. (2019) and Ngunyi et al. (2019) on the importance of choosing distribution 

assumptions for modelling cryptocurrencies. 

Using data from Bitcoin, Etherium, Ripple, Litecoin and Bitcoin Cash, Malek et al. (2023) 

proposed analysing changes in the VaR and ES of these cryptocurrencies before, during and 

after the COVID-19 pandemic. Their results signalled that the stable alpha distribution seems to 

be a viable alternative for estimating VaR and ES as well as the increase in downside risk of 

these assets after the start of the pandemic. This second conclusion corroborates the similar 

study carried out previously by Conlon and McGee (2020). 

Finally, Huang et al. (2024) analysed the volatilities of Bitcoin, Etherium and Binance 

returns using GARCH modelling and concluded that in only 6, 3 and 2 days, respectively for 

each asset, the VaR identified were underestimated. Thus, the authors conclude the validity of 

applying GARCH modelling to cryptocurrency volatility analysis, but at the same time 

recognise that the use of VaR may not be sufficient to capture extreme volatility. This 

conclusion is in line with the idea of using ES in conjunction with VaR to analyse these types of 

assets. 

 

3 METHODOLOGY 

3.1 Database 

For this study, data was collected on the dollar quotations of 10 cryptocurrencies from 

05/14/2019 to 05/14/2023, thus totalling 5 years for the analyses. The assets chosen for the 

sample were based on the market capitalisation of the cryptocurrencies, excluding stablecoins 

and cryptocurrencies that did not exist throughout the 5-year period.  

The following cryptocurrencies were therefore selected for this study: Bitcoin (BTC), 

Ethereum (ETH), Ripple (XRP), Dogcoin (DOGO), Binance (BNB), Cardano (ADA), Tronix 

(TRX), Bitcoin Cash (BCH), Chainlink (LINK) and Litecoin (LTC). The price data for these 

assets was collected via Yahoo Finance and the logarithmic returns for each series were 

calculated from this data. 

In addition, data was collected on two series of external variables, the Fear and Greed 

Index (FGI) and the Market Value to Realised Value (MVRV), both obtained via BGeometrics. 

The FGI is calculated using a combination of indicators such as volatility, market volume, 

social media analysis, surveys, Bitcoin dominance and Google search trends. MVRV is the 

ratio between Bitcoin's current market value and realised value, which takes into account the 

price of each Bitcoin at the time it was last moved. 

 



3.2 Time Series Models 

In order to calculate VaR and ES, it was decided to use GARCH models, which not only 

make it possible to calculate forecasts of asset returns, but can also be used to make forecasts of 

the variance 𝜎𝑡
2  of these assets. The traditional ARMA(p,q)-GARCH(r,m) model is calculated 

from Equation 3, in which the first part corresponds to the autoregressive and moving average 

effects of the returns and the second to the conditional heteroscedasticity effects of variance.  

𝑅𝑡 = �𝜙0 +�∑𝜙𝑖𝑅𝑡−𝑖

𝑝

𝑖=1

+�𝜀𝑡 +∑𝜃𝑗𝜀𝑡−𝑗

𝑞

𝑗=1

 

𝑉𝑎𝑟(𝜀𝑡) = 𝜎𝑡
2 = 𝛼0 + ∑ 𝛼𝑘𝜀𝑡−𝑘

2𝑟
𝑘=1 +�𝜖𝑡 + ∑ 𝛽𝑙𝜎𝑡−𝑙

2𝑚
𝑙=1       (3) 

 

As studies of the limitations of the GARCH model have progressed, alternatives have been 

developed, aimed above all at increasing the robustness of the forecasts. To illustrate the 

modelling used in this study, Table 1 summarises the modifications made to each of the 6 

variations selected. 

Table 1 - GARCH Modelling Variations Used in the Study 

Variação GARCH Equação 

Exponential Generalized 

Autoregressive Conditional 

Heteroscedastic - eGARCH 

ln 𝜎𝑡
2 = 𝛼0 +∑𝛼𝑘

|𝜀𝑡−𝑘|

𝜎𝑡−𝑘

𝑟
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+�∑𝛾𝑘
|𝜀𝑡−𝑘|

𝜎𝑡−𝑘

𝑟

𝑘=1

�𝜖𝑡 +∑𝛽𝑙 ln 𝜎𝑡−𝑙
2

𝑚
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Threshold Generalized 

Autoregressive Conditional 

Heteroscedastic - tGARCH 

𝜎𝑡
2 = 𝛼0 +∑𝛼𝑘𝜀𝑡−𝑘

2

𝑟
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Asymmetric Power 

Autoregressive Conditional 

Heteroscedastic - apARCH 

𝜎𝑡
𝛿 = 𝛼0 +∑𝛼𝑘(|𝜀𝑡−𝑘

� |

𝑟
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Component Generalized 

Autoregressive Conditional 

Heteroscedastic - csGARCH 

𝜎𝑡
𝑡 =�𝑞𝑡 + ℎ𝑡 

Long-term component: 𝑞𝑡 =�𝜔0 + 𝑝0𝑞𝑡−1 + ∑ 𝜙𝑘(𝜀𝑡−𝑘
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2𝑚
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Glosten, Jagannathan and  

Runkle Generalized 

Autoregressive Conditional 

Heteroscedastic - gjrGARCH 

𝜎𝑡
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Non Linear Generalized 

Autoregressive Conditional 

Heteroscedastic - csGARCH 

𝜎𝑡
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Source: The autors 

 



In general, both the gjrGARCh and tGARCH models incorporate a threshold component 

when modelling conditional volatility, allowing it to respond differently to positive and 

negative shocks. The eGARCH, nGARCH and apARCH models work with non-linear 

variations for volatility modelling. Finally, the csGARCH model divides conditional volatility 

into distinct components, each modelled separately. This provides greater flexibility in 

modelling different aspects of volatility, such as short-term and long-term volatility (Charles & 

Darné, 2019). 

Furthermore, it is important to emphasise that the error ε_t must be assumed to follow a 

predefined distribution, originally defined as the normal distribution. However, previous 

studies, as described in section 2.3, identified a divergence between the empirical and 

theoretical distribution of errors, so other distributions that take into account asymmetry and 

kurtosis began to be used to estimate GARCH models. Figure 2 summarises some of the 

distributions commonly used. 

Figure 2 - Histograms of Distributions Used in GARCH Models 

 

Source: The autors 

 

Using the free R software, ARMA(p,q)-GARCH(r,m) models were run for each of the 10 

cryptocurrencies selected. To analyse the best modelling, three variations were considered: 

 Parameters p,q,r,m: the interval [0,2] was considered for each of these parameters, 

disregarding the configuration in which p=q=r=m=0 and in which r=m=0, which would 



indicate the absence of variance modelling in the model, thus totalling 36 possible 

configurations. 

 Distribution: the following distributions were considered: normal, asymmetric normal, 

Student's t, asymmetric Student's t, generalised error distribution, asymmetric generalised error 

distribution, inverse normal, Generalised Hyperbolic and Johnson's SU distribution. 

 GARCH variations: finally, in addition to traditional GARCH modelling, eGARCH, 

apARCH, csGARCH, tGARCH, gjrGARCH and nGARCH models were also run. 

Thus, 2268 models were estimated for each currency. Furthermore, for each of these 

models, 80% of the sample was taken as the period for estimation and 20% for testing. Based 

on the MAPE (Mean Absolute Percentage Error) of the models, the best configurations for each 

cryptocurrency were identified. According to Equation 4, this indicator is calculated by the 

percentage sum of the absolute errors between the actual values 𝑋𝑖  and the predicted values 𝑋𝑖̂. 

𝑀𝐴𝑃𝐸 = �
1

𝑛
∑ |

𝑋𝑖−𝑋𝑖̂.

𝑋𝑖
|𝑛

𝑖=1 𝑥100       (4) 

When the best model was generated, it was used to calculate the VaR and ES for the time 

series. In order to avoid a fixed value for ES, it was decided to use a moving estimation 

window of 60 for this indicator.  

 

3.3 Inclusion of External Variables 

A final analysis is to compare the improvement of the GARCH modelling after including 

the FGI and MVRV as external variables. This inclusion aims to analyse whether these 

indicators of fear/greed and the relationship between the market value and the realised value of 

cryptocurrencies would have an impact on predicting the volatility of the series. Thus, the steps 

described in section 3.2 were repeated and, after calculating the VaR and ES, these were 

compared with those calculated previously. 

 

4 ANALYSING THE RESULTS 

4.1 Preliminary Analyses 

From the data on the logarithmic returns of the cryptoassets, the average returns and 

annualised standard deviation were calculated, as well as the Sharpe Ratio (SR) and the 

historical VaR and ES. In addition, the Kwiatkowski-Phillips-Schmidt-Shin (KPSS), 

Augmented Dickey-Fuller (ADF) and Phillips-Perron (PP) tests were estimated to analyse the 

stationarity of the series. The results are shown in Table 2. 

 



Table 2 - Basic Statistics of the Cryptocurrency Returns Series 

  
Average 

Annualised 

Returns 

Annualised 

Standard 

Deviation 

SR VaR 5% ES 5% KPSS ADF PP 

BTC 0.32462 0.56354 0.57604 -0.05232 -0.08406 0.671 -11.386** -2022.475** 

ETH 0.42889 0.71151 0.60279 -0.06746 -0.10793 0.927 -11.257** -2047.322** 

XRP 0.02969 0.86191 0.03445 -0.07416 -0.12236 0.052 -11.575** -2001.426** 

DOGE 0.70356 1.15071 0.61141 -0.07626 -0.1308 0.835 -11.378** -1889.877** 

BNB 0.54945 0.75726 0.72558 -0.0655 -0.10819 0.955 -10.288** -2162.322** 

ADA 0.25303 0.82096 0.30821 -0.07737 -0.11485 0.598 -10.713** -2063.894** 

TRX 0.23254 0.74215 0.31334 -0.06948 -0.11585 0.217 -12.049** -2011.702** 

BCH 0.01354 0.84904 0.01595 -0.07474 -0.12539 0.095 -12.275** -2128.447** 

LINK 0.46242 0.94777 0.48791 -0.08922 -0.13531 0.997 -12.224** -2009.513** 

LTC -0.0207 0.76861 -0.02693 -0.0759 -0.11899 0.069 -12.135** -1930.628** 

Note: ***; **; * indicate significance at 1%, 5% and 10% respectively. 

Source: The authors 

 

Analysing the table provided reveals several important characteristics about the different 

cryptocurrencies in terms of returns, volatility, adjusted risk and the statistical properties of the 

time series. Firstly, when looking at the average annualised returns, DOGE stands out with the 

highest return (0.70356), followed by BNB (0.54945) and ETH (0.42889). In contrast, LTC 

shows a negative return (-0.0207), indicating an average annual loss. 

In terms of volatility, DOGE again stands out, but this time negatively, with the highest 

annualised standard deviation (1.15071), signalling high volatility. BTC and BNB, on the other 

hand, show lower volatility with standard deviations of 0.56354 and 0.75726 respectively. 

The IR, which measures risk-adjusted return, indicates that BNB has the best performance 

(0.72558), suggesting a good balance between return and risk. On the other hand, LTC has a 

negative Sharpe Ratio (-0.02693), suggesting that the associated risk does not compensate for 

the return. 

Analysing the VaR at 5%, which estimates the maximum loss expected under normal 

market conditions for 5% of the worst-case scenarios, we see that LINK has the highest 

negative VaR (-0.08922), indicating greater potential losses. BTC has the lowest negative VaR 

(-0.05232), suggesting lower potential losses. The ES at 5%, which calculates the average 

expected loss in the 5% worst cases, shows that LINK also has the highest expected loss (-

0.13531), indicating greater extreme risk. BTC again stands out positively with the lowest 

expected loss (-0.08406). 

The KPSS, ADF and PP stationarity tests provide insight into the nature of the time series 

of cryptocurrency returns. It is important to emphasise that the KPSS establishes the null 



hypothesis that the series is stationary and therefore has no unit root, while the ADF and PP 

tests have the null hypothesis that the series has a unit root. It is therefore possible to 

corroborate that cryptocurrency returns are stationary series, which supports the use of ARMA-

GARCH models. 

 

4.2 ARIMA models and ARCH test 

Continuing the analyses of the time series, the validity of applying models for 

heteroscedasticity of the variances of the time series was checked. To do this, the Lagrange 

Multiplier (LM) test was applied to ARCH modelling.  

However, to carry out this procedure, it is first necessary to calculate the best ARMA 

model for each time series so that the LM test can then be applied, testing the null hypothesis of 

no correlation between the model's residuals. The best ARMA models were estimated for the 10 

series of cryptocurrency returns using the auto.arima method in the forecast package, which 

identifies the values of p, d and q that minimise the AIC and SBIC criteria. Based on the best 

modelling, LM tests were carried out, the results of which are shown in Table 3. Furthermore, 

to enrich the analyses, Figure 3 shows, in addition to the graphs of cryptocurrency returns, the 

graphs of Autocorrelation Functions (ACF) and Partial Autocorrelation Functions (PACF). 

 

Table 3 - LM ARCH Test’s Results 

 
Model 

Order of the LM ARCH tests 

4 8 12 16 20 24 

BTC ARIMA(2,0,2) 8503*** 3238*** 2116*** 1575*** 1237*** 1026*** 

ETH ARIMA(5,0,0) 6880*** 2595*** 1697*** 1260*** 983*** 811*** 

XRP ARIMA(2,0,3) 6541*** 2974*** 1962*** 1389*** 1086*** 841*** 

DOGO ARIMA(2,0,2) 22895*** 10307*** 6562*** 4886*** 3874*** 3202*** 

BNB ARIMA(2,0,2) 5760*** 2254*** 1190*** 875*** 674*** 558*** 

ADA ARIMA(2,0,2) 3414*** 1391*** 914*** 659*** 526*** 437*** 

TRX ARIMA(1,0,1) 6467*** 2269*** 1501*** 1053*** 839*** 693*** 

BCH ARIMA(5,0,4) 7421*** 2816*** 1865*** 1225*** 917*** 751*** 

LINK ARIMA(0,0,1) 5037*** 1993*** 1319*** 953*** 746*** 617*** 

LTC ARIMA(1,0,1) 4418*** 1631*** 1068*** 785*** 623*** 515*** 

Note: ***; **; * indicate significance at 1%, 5% and 10% respectively. 

Source: The authors 

 

The results show that there is a correlation between the residuals of the ARIMA 

models that minimise the AIC and SBIC criteria. This corroborates the application of modelling 

for the volatility of the residuals, which is discussed in the next section. 



Figure 3 - Graphs of cryptocurrency returns, ACF and PACF

 

Source: The authors 



4.3 GARCH models 

Based on the previous analyses, the validity of applying models to estimate the 

heteroscedasticity of the selected cryptocurrency series was verified. Thus, using the rugarch 

package, 2268 variations of ARMA-GARCH models were estimated, considering 80% of the 

total sample of return series. Forecasts were then made for the remaining 20% of the sample, 

selecting the configuration that minimised the MAPE for each asset. The results are shown in 

Table 4. 

 

Table 4 - Results of the ARMA-GARCH Models for Cryptocurrencies 

Cripto Distribution GARCH Modelo AIC BIC MSE MAE MAPE 

BTC 

Generalized 

Error 

Distribution 

csGARCH ARMA(0,2)GARCH(1,2) -4.0330 -3.9968 0.0006 0.0168 0.9959% 

ETH Skew-Normal GARCH ARMA(1,1)GARCH(0,1) -3.2388 -3.2171 0.0007 0.0181 0.9961% 

XRP 
Normal 

Inverse 
GARCH ARMA(2,0)GARCH(0,1) -3.3896 -3.3643 0.0017 0.0222 0.9984% 

DOGO 
Normal 

Inverse 
GARCH ARMA(2,2)GARCH(1,0) -3.3908 -3.3582 0.0018 0.0281 0.9944% 

BNB Normal tGARCH ARMA(2,1)GARCH(2,0) -3.3626 -3.3301 0.0008 0.0181 0.9977% 

ADA Normal apARCH ARMA(1,1)GARCH(2,2) -3.1096 -3.0698 0.0014 0.0261 0.9952% 

TRX Normal GARCH ARMA(2,2)GARCH(2,1) -3.3750 -3.3424 0.0004 0.0135 0.9975% 

BCH Normal tGARCH ARMA(2,0)GARCH(2,2) -3.1891 -3.1529 0.0027 0.0303 0.9984% 

LINK 
Skew-

Student-T 
tGARCH ARMA(2,0)GARCH(2,0) -2.9084 -2.8722 0.0016 0.0292 0.9960% 

LTC Normal gjrGARCH ARMA(2,2)GARCH(1,2) -3.2325 -3.1963 0.0013 0.0234 0.9913% 

Source: The authors 

 

There are four interesting points about the results. Firstly, all the MAPEs of the models are 

less than 1%, thus highlighting that even limiting the values of the parameters p,q,r and m to 

between 0 and 2, the results, as well as being parsimonious, also have robust predictive power.  

Furthermore, it should be noted that cryptocurrencies with higher annualised returns, such 

as ETH, DOGE, BNB and LINK, tend to use normal distributions or variations of the normal. 

In addition, for cryptocurrencies with greater risk, such as DOGE and LINK, tGARCH models 

are chosen to better capture extreme volatility. On the other hand, cryptocurrencies with a lower 

standard deviation, such as BTC and ETH, use GARCH models and less extreme distributions. 

These conclusions corroborate analyses such as those by Fung et al. (2022) and Acereda et al. 

(2020) and Ngunyi et al. (2019) on the importance of choosing the GARCH model used and the 

distribution assumed for the errors individually for each asset analysed. 

 

4.3 Inclusion of External Regressors 



In order to check whether the inclusion of two external variables, the FGI and the MVRV, 

would increase the predictive capacity of the volatility of cryptocurrency returns, new ARMA-

GARCH models were estimated, and Table 5 shows the results of the models that minimised 

the MAPE. 

 Table 5 - Results of ARMA-GARCH Models with External Variables for 

Cryptocurrencies 

Cripto Distribution GARCH Modelo AIC BIC MSE MAE MAPE 

BTC Johnson’s SU  csGARCH ARMA(0,0)GARCH(1,1) -4.041637 -4.0055 0.0006 0.0168 0.9957% 

ETH Normal eGARCH ARMA(2,0)GARCH(1,2) -3.353479 -3.3173 0.0007 0.0181 0.9966% 

XRP Normal csGARCH ARMA(2,1)GARCH(2,1) -3.256535 -3.2131 0.0017 0.0222 0.9961% 

DOGO Normal csGARCH ARMA(2,2)GARCH(2,2) -3.034956 -2.9843 0.0018 0.0281 0.9973% 

BNB 

Skew-

Generalized 

Error 

Distribution 

apARCH ARMA(0,0)GARCH(1,2) -3.6044 -3.5646 0.0008 0.0181 0.9993% 

ADA Normal csGARCH ARMA(2,2)GARCH(2,2) -3.0350 -2.9843 0.0018 0.0281 0.9973% 

TRX Normal csGARCH ARMA(2,2)GARCH(2,2) -3.0350 -2.9843 0.0018 0.0281 0.9973% 

BCH 

Generalized 

Error 

Distribution 
nGARCH ARMA(0,0)GARCH(2,2) -3.4124 -3.3762 0.0027 0.0303 0.9988% 

LINK 
Normal 

Inverse 
GARCH ARMA(2,2)GARCH(2,1) -2.9557 -2.9087 0.0016 0.0292 0.9920% 

LTC 
Generalized 

Hyperbolic 
apARCH ARMA(0,0)GARCH(2,2) -3.380707 -3.3300 0.0013 0.0235 0.9979% 

Source: The authors 

 

From the data in Table 5, it can be seen that the inclusion of FGI and MVRV did not 

generate a uniform effect on the indicators of the ARMA-GARCH models used. With specific 

regard to MAPE, BTC, XRP, TRX and LINK showed a reduction in this index, reflecting 

improvements in forecasts, while the other cryptocurrencies showed an increase in these values. 

However, it is worth noting that all the variations obtained in the AMPE were less than 1%, 

signalling, a priori, a low forecasting gain when adding the external regressors. 

Furthermore, it can be seen that the inclusion of external regressors in the modelling 

altered the parameters of the time series models. Thus, it can be concluded that the inclusion of 

external variables can alter the dynamics of cryptocurrency returns, thus reflecting new patterns 

of error variance, in turn requiring more flexible distributions to be properly captured. The 

change in distributions indicates that external variables have a significant impact on the way 

returns are distributed. 

In summary, the inclusion of external variables in the ARMA-GARCH models resulted in 

adjustments to the models and distributions, reflecting occasional improvements in the 



prediction of some cryptocurrencies and minimal variation in overall predictive performance. 

The models chosen indicate a preference for distributions and structures that better capture the 

specific nature of the volatility of each cryptocurrency, with emphasis on the use of more robust 

models such as csGARCH and tGARCH for cryptocurrencies with higher volatility.  

 

4.4 Analysing VaR and ES 

As discussed above, the inclusion of external regressors affects the choice of time series 

model parameters that minimise the MAPE of forecasts. In this sense, it is interesting to 

comparatively analyse the volatility estimation performance of models controlling for the 

inclusion of external regressors. In this respect, Table 6 shows the VaR and ES results 

calculated for the cryptocurrency series based on the volatility estimates generated by the 

ARMA-GARCH models according to the parameters highlighted in Tables 4 and 5.  

 

Table 6 - VaR and ES Results Estimated from ARMA-GARCH Models 

Criptocurrency Result VaR ES VaR_Ext ES_Ext 

BTC 
Success 95.87% 98.13% 96.66% 98.47% 

Failure 4.13% 1.87% 3.34% 1.53% 

ETH 
Success 95.36% 98.59% 97.29% 98.76% 

Failure 4.64% 1.41% 2.71% 1.24% 

XRP 
Success 96.44% 98.64% 97.91% 98.87% 

Failure 3.56% 1.36% 2.09% 1.13% 

DOGO 
Success 96.72% 97.85% 98.02% 97.85% 

Failure 3.28% 2.15% 1.98% 2.15% 

BNB 
Success 97.40% 98.76% 95.70% 97.91% 

Failure 2.60% 1.24% 4.30% 2.09% 

ADA 
Success 97.45% 98.64% 97.62% 98.42% 

Failure 2.55% 1.36% 2.38% 1.58% 

TRX 
Success 97.45% 97.85% 97.23% 97.96% 

Failure 2.55% 2.15% 2.77% 2.04% 

BCH 
Success 97.34% 98.53% 95.81% 98.02% 

Failure 2.66% 1.47% 4.19% 1.98% 

LINK 
Success 95.87% 97.96% 95.81% 97.96% 

Failure 4.13% 2.04% 4.19% 2.04% 

LTC 
Success 96.55% 97.79% 95.08% 97.68% 

Failure 3.45% 2.21% 4.92% 2.32% 

Note: ***; **; * indicate significance at 1%, 5% and 10% respectively. 

Source: The authors 

 



Table 6 was constructed based on the analysis between the predicted VaR and ES values 

and the actual return of each cryptocurrency. Thus, “Success” indicates the percentage of times 

the actual return was higher than the VaR/ES in the data sample, and “Failure” indicates the 

percentage of times the actual return showed a negative result that exceeded these risk indices. 

Overall, the calculated VaRs had a “Success” rate of 96.65% in estimating risk, implying a 

global failure margin of 3.35%. For the ES, these values are 98.27% and 1.73%, respectively, 

indicating that, in general, the ES shows a lower margin of error for worse outcomes when 

compared to VaR, as expected by the literature (Acerbi & Tasche, 2002; Acereda et al., 2020; 

Malek et al., 2023). Thus, it is corroborated that the ES is a more adequate tool for risk 

management for cryptocurrency investors, aligning with the conclusions of Huang et al. (2024). 

To analyze the efficiency gain of risk management considering external variables 

(VaR_Ext and ES_EXT), it is observed that, overall, the models have a success rate of 96.71%, 

indicating a performance gain of 0.07% regarding the VaR methodology. However, regarding 

the ES, it had a success rate of 98.19%, implying a loss of efficiency of about 0.09%. 

Therefore, it is noticed that, although VaR presents a benefit when estimated considering 

external regressors, the ES does not share this effect. 

To analyze the significance of the differences in average success rates of VaR and ES when 

considering the effect of external variables, Table 7 was generated. It shows the variation in 

success rates and the respective level of significance of this variation. 

 

Table 7 – Difference in VaR and ES When Considering External Regressors 

Criptocurrency VaR ES 

BTC 0.79%** 1.81%** 

ETH 1.92%*** 0.17% 

XRP 1.47%*** 0.17% 

DOGO 1.3%*** 0.00% 

BNB -1.7%*** -0.85%*** 

ADA 0.17% -0.23%*** 

TRX -0.23% 0.11% 

BCH -1.53%*** -0.51%*** 

LINK -0.06% 0.00% 

LTC -1.47%*** -0.11% 

Note: ***; **; * indicate significance at 1%, 5% and 10% respectively. 

Source: The authors 

 

According to the data, BTC, ETH, XRP, and DOGE show significant gains when using 

VaR_Ext compared to VaR. Conversely, BNB, BCH, and LTC show a loss of this efficiency. 



Therefore, FGI and MVRV appear more useful for predicting the volatility of the four 

cryptocurrencies with the largest market share, whereas for others, their effects do not seem 

relevant or even worsen the quality of predictions. 

Regarding ES_Ext, it was significantly superior to ES only for BTC, while for BNB, ADA, 

and BCH, the results indicate a loss of efficiency. Thus, it is concluded that ES, although better 

than VaR for risk management, does not benefit from using FGI and MVRV within the context 

of ARMA-GARCH models, except in the case of BTC. 

 

5 FINAL CONSIDERATIONS 

Investor interest in the cryptocurrency market has been growing in recent years. However, 

the higher degree of volatility in cryptocurrencies also necessitates greater risk management 

when including such assets in portfolios. Aligned with this concern, the present study focused 

on analyzing the capability of using ARMA-GARCH models for risk management of the top 10 

cryptocurrencies, excluding stablecoins, with over 5 years in the market. 

To achieve this, 2268 time series model estimations were conducted for these assets, 

aiming to identify model parameter variations that minimized the mean of mean absolute 

errors. As a result, the MAPEs obtained for the best identified models were less than 1%, thus 

reflecting the quality of predictions. Using these more efficient models, VaR and ES were 

estimated for the selected cryptocurrencies. 

Overall, the success rate of both metrics exceeded 95%, thereby reflecting the suitability of 

the proposed methodology for risk management. However, it is worth noting that ES proved to 

be a more accurate alternative than VaR. 

Subsequently, the analyses of the models were revisited considering two external variables, 

FGI and MVRV. Comparative analyses of VaR_Ext revealed that the four largest 

cryptocurrencies (BTC, ETH, XRP, and DOGE) significantly improved performance by 

including these variables in ARMA-GARCH modeling. However, for ES_Ext, it proved more 

efficient only for BTC, while for 3 out of the other 9 cryptocurrencies, it was statistically less 

efficient than traditional ES. 

Another important result of this study was the lack of clear identification of a pattern in 

model parameter selection, especially in variations of the GARCH family and error 

distributions. Thus, it reinforces the need to estimate specific models for each cryptocurrency, 

aiming to identify the one that adjusts most efficiently to risk heterogeneity, kurtosis, and 

skewness. 



Limitations of this study include three points. Firstly, cryptocurrency returns were 

calculated based on USD quotes. Additionally, only two external variables were considered, 

while other relevant effects could be included in ARMA-GARCH modeling adjustments. 

Finally, this study focused on cryptocurrencies with the highest market capitalization, selecting 

10 out of over 9,000 coins. 

Therefore, for future research, it is suggested to first replicate this study considering the 

exchange rate effect of the dollar to expand the study's conclusions. Furthermore, it is also 

suggested to consider quotations in terms of BTC rather than USD, as this change in scale may 

alter the volatility of time series data. 

Secondly, expanding the scope of external variables used aims to further enhance the 

predictive capability of models and the efficiency of estimated VaR and ES. Finally, it is 

suggested to study risk management comparatively between cryptocurrencies with higher and 

lower market participation, aiming to identify changes in the conclusions of this study when 

analyzing smaller cryptocurrencies. 
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